Página 10 dos resultados de 4394 itens digitais encontrados em 0.011 segundos
Resultados filtrados por Publicador: Public Library of Science

‣ CanDrA: Cancer-Specific Driver Missense Mutation Annotation with Optimized Features

Mao, Yong; Chen, Han; Liang, Han; Meric-Bernstam, Funda; Mills, Gordon B.; Chen, Ken
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 30/10/2013 Português
Relevância na Pesquisa
38.086023%
Driver mutations are somatic mutations that provide growth advantage to tumor cells, while passenger mutations are those not functionally related to oncogenesis. Distinguishing drivers from passengers is challenging because drivers occur much less frequently than passengers, they tend to have low prevalence, their functions are multifactorial and not intuitively obvious. Missense mutations are excellent candidates as drivers, as they occur more frequently and are potentially easier to identify than other types of mutations. Although several methods have been developed for predicting the functional impact of missense mutations, only a few have been specifically designed for identifying driver mutations. As more mutations are being discovered, more accurate predictive models can be developed using machine learning approaches that systematically characterize the commonality and peculiarity of missense mutations under the background of specific cancer types. Here, we present a cancer driver annotation (CanDrA) tool that predicts missense driver mutations based on a set of 95 structural and evolutionary features computed by over 10 functional prediction algorithms such as CHASM, SIFT, and MutationAssessor. Through feature optimization and supervised training...

‣ Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 15/07/2015 Português
Relevância na Pesquisa
38.132153%
Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore...

‣ Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhar
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.297314%
Ingo Mellinghoff and colleagues sequenced theEGFR gene in glioblastoma samples and cell lines and identified missense mutations in the extracellular domain that suggest a new mechanism for EGFR activation.