Página 12 dos resultados de 60878 itens digitais encontrados em 0.044 segundos
Resultados filtrados por Publicador: National Academy of Sciences

‣ An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies

Schönfeld, D.; Matschiner, G.; Chatwell, L.; Trentmann, S.; Gille, H.; Hülsmeyer, M.; Brown, N.; Kaye, P. M.; Schlehuber, S.; Hohlbaum, A. M.; Skerra, A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
Biomolecular reagents that enable the specific molecular recognition of proteins play a crucial role in basic research as well as medicine. Up to now, antibodies (immunoglobulins) have been widely used for this purpose. Their predominant feature is the vast repertoire of antigen-binding sites that arise from a set of 6 hypervariable loops. However, antibodies suffer from practical disadvantages because of their complicated architecture, large size, and multiple functions. The lipocalins, on the other hand, have evolved as a protein family that primarily serves for the binding of small molecules. Here, we show that an engineered lipocalin, derived from human Lcn2, can specifically bind the T cell coreceptor CTLA-4 as a prescribed protein target with subnanomolar affinity. Crystallographic analysis reveals that its reshaped cup-like binding site, which is formed by 4 variable loops, provides perfect structural complementarity with this “antigen.” Furthermore, comparison with the crystal structure of the uncomplexed engineered lipocalin indicates a pronounced induced-fit mechanism, a phenomenon so far considered typical for antibodies. By recognizing the same epitope on CTLA-4 that interacts with the counterreceptors B7.1/B7.2 on antigen-presenting cells the engineered Lcn2 exhibits strong...

‣ Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging

Bergmann, U.; Morton, R. W.; Manning, P. L.; Sellers, W. I.; Farrar, S.; Huntley, K. G.; Wogelius, R. A.; Larson, P.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
Evolution of flight in maniraptoran dinosaurs is marked by the acquisition of distinct avian characters, such as feathers, as seen in Archaeopteryx from the Solnhofen limestone. These rare fossils were pivotal in confirming the dinosauria-avian lineage. One of the key derived avian characters is the possession of feathers, details of which were remarkably preserved in the Lagerstätte environment. These structures were previously simply assumed to be impressions; however, a detailed chemical analysis has, until now, never been completed on any Archaeopteryx specimen. Here we present chemical imaging via synchrotron rapid scanning X-ray fluorescence (SRS-XRF) of the Thermopolis Archaeopteryx, which shows that portions of the feathers are not impressions but are in fact remnant body fossil structures, maintaining elemental compositions that are completely different from the embedding geological matrix. Our results indicate phosphorous and sulfur retention in soft tissue as well as trace metal (Zn and Cu) retention in bone. Other previously unknown chemical details of Archaeopteryx are also revealed in this study including: bone chemistry, taphonomy (fossilization process), and curation artifacts. SRS-XRF represents a major advancement in the study of the life chemistry and fossilization processes of Archaeopteryx and other extinct organisms because it is now practical to image the chemistry of large specimens rapidly at concentration levels of parts per million. This technique has wider application to the archaeological...

‣ 2D luminescence imaging of pH in vivo

Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields.

‣ Arabidopsis hybrid speciation processes

Schmickl, Roswitha; Koch, Marcus A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species...

‣ Microfluidic Western blotting

Hughes, Alex J.; Herr, Amy E.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
Rapid, quantitative Western blotting is a long-sought bioanalytical goal in the life sciences. To this end, we describe a Western blotting assay conducted in a single glass microchannel under purely electronic control. The μWestern blot is comprised of multiple steps: sample enrichment, protein sizing, protein immobilization (blotting), and in situ antibody probing. To validate the microfluidic assay, we apply the μWestern blot to analyses of human sera (HIV immunoreactivity) and cell lysate (NFκB). Analytical performance advances are achieved, including: short durations of 10–60 min, multiplexed analyte detection, mass sensitivity at the femtogram level, high-sensitivity 50-pM detection limits, and quantitation capability over a 3.6-log dynamic range. Performance gains are attributed to favorable transport and reaction conditions on the microscale. The multistep assay design relies on a photopatternable (blue light) and photoreactive (UV light) polyacrylamide gel. This hydrophilic polymer constitutes both a separation matrix for protein sizing and, after brief UV exposure, a protein immobilization scaffold for subsequent antibody probing of immobilized protein bands. We observe protein capture efficiencies exceeding 75% under sizing conditions. This compact microfluidic design supports demonstration of a 48-plex μWestern blot in a standard microscope slide form factor. Taken together...

‣ Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging

Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals...

‣ Global meta-analysis reveals no net change in local-scale plant biodiversity over time

Vellend, Mark; Baeten, Lander; Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beauséjour, Robin; Brown, Carissa D.; De Frenne, Pieter; Verheyen, Kris; Wipf, Sonja
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
A major advance of the last 20 y at the interface of biological, environmental, and conservation sciences has been the demonstration that plant biodiversity positively influences ecosystem function. Linking these results to applied conservation efforts hinges on the assumption that biodiversity is actually declining at the local scale at which diversity–function relationships are strongest. Our compilation and analysis of a global database of >16,000 repeat survey vegetation plots from habitats across the globe directly contradict this assumption. We find no general tendency for local-scale plant species diversity to decline over the last century, calling into question the widespread use of ecosystem function experiments to argue for the importance of biodiversity conservation in nature.

‣ Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution

Yao, Jie; Larson, Daniel R.; Vishwasrao, Harshad D.; Zipfel, Warren R.; Webb, Watt W.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.61009%
Water-soluble quantum dots (qdots) are now being used in life sciences research to take advantage of their bright, easily excited fluorescence and high photostability. Although the frequent erratic blinking and substantial dark (never radiant) fractions that occur in all available qdots may interfere with many applications, these properties of individual particles in biological environments had not been fully evaluated. By labeling Qdot-streptavidin with organic dyes, we were able to distinguish individual dark and bright qdots and to observe blinking events as qdots freely diffused in aqueous solution. Bright fractions were measured by confocal fluorescence coincidence analysis (CFCA) and two-photon cross-correlation fluorescence correlation spectroscopy (FCS). The observed bright fractions of various preparations were proportional to the ensemble quantum yields (QYs), but the intrinsic brightness of individual qdots was found to be constant across samples with different QYs but the same emission wavelengths. Increasing qdots' illuminated dwell time by 10-fold during FCS did not change the fraction of apparently dark qdots but did increase the detected fraction of blinking qdots, suggesting that the dark population does not arise from millisecond blinking. Combining CFCA with wide-field imaging of arrays of qdots localized in dilute agarose gel...