Página 12 dos resultados de 4394 itens digitais encontrados em 0.011 segundos
Resultados filtrados por Publicador: The National Academy of Sciences

‣ Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients

Broughton, Bernard C.; Cordonnier, Agnes; Kleijer, Wim J.; Jaspers, Nicolaas G. J.; Fawcett, Heather; Raams, Anja; Garritsen, Victor H.; Stary, Anne; Avril, Marie-Françoise; Boudsocq, François; Masutani, Chikahide; Hanaoka, Fumio; Fuchs, Robert P.; Sara
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.844297%
Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase η, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA...