Página 14 dos resultados de 4394 itens digitais encontrados em 0.006 segundos
Resultados filtrados por Publicador: Elsevier

‣ Mutations in MED12 Cause X-Linked Ohdo Syndrome

Vulto-van Silfhout, Anneke T.; de Vries, Bert B.A.; van Bon, Bregje W.M.; Hoischen, Alexander; Ruiterkamp-Versteeg, Martina; Gilissen, Christian; Gao, Fangjian; van Zwam, Marloes; Harteveld, Cornelis L.; van Essen, Anthonie J.; Hamel, Ben C.J.;
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 07/03/2013 Português
Relevância na Pesquisa
387.70277%
Ohdo syndrome comprises a heterogeneous group of disorders characterized by intellectual disability (ID) and typical facial features, including blepharophimosis. Clinically, these blepharophimosis-ID syndromes have been classified in five distinct subgroups, including the Maat-Kievit-Brunner (MKB) type, which, in contrast to the others, is characterized by X-linked inheritance and facial coarsening at older age. We performed exome sequencing in two families, each with two affected males with Ohdo syndrome MKB type. In the two families, MED12 missense mutations (c.3443G>A [p.Arg1148His] or c.3493T>C [p.Ser1165Pro]) segregating with the phenotype were identified. Upon subsequent analysis of an additional cohort of nine simplex male individuals with Ohdo syndrome, one additional de novo missense change (c.5185C>A [p.His1729Asn]) in MED12 was detected. The occurrence of three different hemizygous missense mutations in three unrelated families affected by Ohdo syndrome MKB type shows that mutations in MED12 are the underlying cause of this X-linked form of Ohdo syndrome. Together with the recently described KAT6B mutations resulting in Ohdo syndrome Say/Barber/Biesecker/Young/Simpson type, our findings point to aberrant chromatin modification as being central to the pathogenesis of Ohdo syndrome.

‣ Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ou
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 11/03/2011 Português
Relevância na Pesquisa
389.82%
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function...