Página 14 dos resultados de 4394 itens digitais encontrados em 0.015 segundos
Resultados filtrados por Publicador: Nature Publishing Group

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, Anna; Tarpey, Patrick S; Licata, Andrea; Cox, James; Whibley, Annabel; Boyle, Jackie; Rogers, Carolyn; Grigg, John; Partington, Michael; Stevenson, Roger E; Tolmie, John; Yates, John RW; Turner, Gillian; Wilson, Meredith; Futreal, Andrew P; Corbe
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...

‣ Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations

Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, A.; Tarpey, P.; Licata, A.; Cox, J.; Whibley, A.; Boyle, J.; Rogers, C.; Grigg, J.; Partington, M.; Stevenson, R.; Tolmie, J.; Yates, J.; Turner, G.; Wilson, M.; Futreal, P.; Corbett, M.; Shaw, M.; Gecz, J.; Raymond, F.; Stratton, M.
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em //2010 Português
Relevância na Pesquisa
388.90844%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...