Página 21 dos resultados de 60878 itens digitais encontrados em 0.023 segundos

‣ Structure of the histone chaperone CIA/ASF1–double bromodomain complex linking histone modifications and site-specific histone eviction

Akai, Yusuke; Adachi, Naruhiko; Hayashi, Yohei; Eitoku, Masamitsu; Sano, Norihiko; Natsume, Ryo; Kudo, Norio; Tanokura, Masaru; Senda, Toshiya; Horikoshi, Masami
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 Å resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).

‣ Imprints of the genetic code in the ribosome

Johnson, David B. F.; Wang, Lei
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The establishment of the genetic code remains elusive nearly five decades after the code was elucidated. The stereochemical hypothesis postulates that the code developed from interactions between nucleotides and amino acids, yet supporting evidence in a biological context is lacking. We show here that anticodons are selectively enriched near their respective amino acids in the ribosome, and that such enrichment is significantly correlated with the canonical code over random codes. Ribosomal anticodon-amino acid enrichment further reveals that specific codons were reassigned during code evolution, and that the code evolved through a two-stage transition from ancient amino acids without anticodon interaction to newer additions with anticodon interaction. The ribosome thus serves as a molecular fossil, preserving biological evidence that anticodon-amino acid interactions shaped the evolution of the genetic code.

‣ Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency

Harrison, Rosemary S.; Shepherd, Nicholas E.; Hoang, Huy N.; Ruiz-Gómez, Gloria; Hill, Timothy A.; Driver, Russell W.; Desai, Vishal S.; Young, Paul R.; Abbenante, Giovanni; Fairlie, David P.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Recombinant proteins are important therapeutics due to potent, highly specific, and nontoxic actions in vivo. However, they are expensive medicines to manufacture, chemically unstable, and difficult to administer with low patient uptake and compliance. Small molecule drugs are cheaper and more bioavailable, but less target-specific in vivo and often have associated side effects. Here we combine some advantages of proteins and small molecules by taking short amino acid sequences that confer potency and selectivity to proteins, and fixing them as small constrained molecules that are chemically and structurally stable and easy to make. Proteins often use short α-helices of just 1–4 helical turns (4–15 amino acids) to interact with biological targets, but peptides this short usually have negligible α-helicity in water. Here we show that short peptides, corresponding to helical epitopes from viral, bacterial, or human proteins, can be strategically fixed in highly α-helical structures in water. These helix-constrained compounds have similar biological potencies as proteins that bear the same helical sequences. Examples are (i) a picomolar inhibitor of Respiratory Syncytial Virus F protein mediated fusion with host cells, (ii) a nanomolar inhibitor of RNA binding to the transporter protein HIV-Rev...

‣ A general basis for quarter-power scaling in animals

Banavar, Jayanth R.; Moses, Melanie E.; Brown, James H.; Damuth, John; Rinaldo, Andrea; Sibly, Richard M.; Maritan, Amos
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12. Quarter-power scaling can arise even when there is no underlying fractality. The canonical “fourth dimension” in biological scaling relations can result from matching the velocity of flow through the network to the linear dimension of the terminal “service volume” where resources are consumed. These models have broad applicability for the optimal design of biological and engineered systems where energy, materials, or information are distributed from a single source.

‣ Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci

Foucault, Marie-Laure; Depardieu, Florence; Courvalin, Patrice; Grillot-Courvalin, Catherine
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Inducible vancomycin resistance in enterococci is due to a sophisticated mechanism that combines synthesis of cell wall peptidoglycan precursors with low affinity for glycopeptides and elimination of the normal target precursors. Although this dual mechanism, which involves seven genes organized in two operons, is predicted to have a high fitness cost, resistant enterococci have disseminated worldwide. We have evaluated the biological cost of VanB-type resistance due to acquisition of conjugative transposon Tn1549 in Enterococcus faecium and Enterococcus faecalis. Because fitness was dependent on the integration site of Tn1549, an isogenic set of E. faecalis was constructed to determine the cost of inducible or constitutive expression of resistance or of carriage of Tn1549. A luciferase gene was inserted in the integrase gene of the transposon to allow differential quantification of the strains in cocultures and in the digestive tract of gnotobiotic mice. Both in vitro and in vivo, carriage of inactivated or inducible Tn1549 had no cost for the host in the absence of induction by vancomycin. In contrast, induced or constitutively resistant strains not only had reduced fitness but were severely impaired in colonization ability and dissemination among mice. These data indicate that tight regulation of resistance expression drastically reduces the biological cost associated with vancomycin resistance in Enterococcus spp. and accounts for the widespread dissemination of these strains. Our findings are in agreement with the observation that regulation of expression is common in horizontally acquired resistance and represents an efficient evolutionary pathway for resistance determinants to become selectively neutral.

‣ Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda

Cao, Youfang; Lu, Hsiao-Mei; Liang, Jie
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Computational studies of biological networks can help to identify components and wirings responsible for observed phenotypes. However, studying stochastic networks controlling many biological processes is challenging. Similar to Schrödinger’s equation in quantum mechanics, the chemical master equation (CME) provides a basic framework for understanding stochastic networks. However, except for simple problems, the CME cannot be solved analytically. Here we use a method called discrete chemical master equation (dCME) to compute directly the full steady-state probability landscape of the lysogeny maintenance network in phage lambda from its CME. Results show that wild-type phage lambda can maintain a constant level of repressor over a wide range of repressor degradation rate and is stable against UV irradiation, ensuring heritability of the lysogenic state. Furthermore, it can switch efficiently to the lytic state once repressor degradation increases past a high threshold by a small amount. We find that beyond bistability and nonlinear dimerization, cooperativity between repressors bound to OR1 and OR2 is required for stable and heritable epigenetic state of lysogeny that can switch efficiently. Mutants of phage lambda lack stability and do not possess a high threshold. Instead...

‣ Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics

Allan, Brian F.; Dutra, Humberto P.; Goessling, Lisa S.; Barnett, Kirk; Chase, Jonathan M.; Marquis, Robert J.; Pang, Genevieve; Storch, Gregory A.; Thach, Robert E.; Orrock, John L.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Despite the ubiquity of invasive organisms and their often deleterious effects on native flora and fauna, the consequences of biological invasions for human health and the ecological mechanisms through which they occur are rarely considered. Here we demonstrate that a widespread invasive shrub in North America, Amur honeysuckle (Lonicera maackii), increases human risk of exposure to ehrlichiosis, an emerging infectious disease caused by bacterial pathogens transmitted by the lone star tick (Amblyomma americanum). Using large-scale observational surveys in natural areas across the St. Louis, Missouri region, we found that white-tailed deer (Odocoileus virginianus), a preeminent tick host and pathogen reservoir, more frequently used areas invaded by honeysuckle. This habitat preference translated into considerably greater numbers of ticks infected with pathogens in honeysuckle-invaded areas relative to adjacent honeysuckle-uninvaded areas. We confirmed this biotic mechanism using an experimental removal of honeysuckle, which caused a decrease in deer activity and infected tick numbers, as well as a proportional shift in the blood meals of ticks away from deer. We conclude that disease risk is likely to be reduced when honeysuckle is eradicated...

‣ Single amino acid change alters the ability to specify male or female organ identity

Airoldi, Chiara A.; Bergonzi, Sara; Davies, Brendan
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The molecular mechanisms underlying the developmental processes that shape living organisms provide a basis to understand the evolution of biological complexity. Gene duplication allows biological functions to become separated, leading to increased complexity through subfunctionalization. Recently, the relative contributions to morphological evolution of changes to the regulatory and/or coding regions of duplicated genes have been the subject of debate. Duplication generated multiple copies of the MADS-box transcription factor genes that play essential roles in specifying organ identity in the flower, making this evolutionary novelty a good model to investigate the nature of the changes necessary to drive subfunctionalization. Here, we show that naturally occurring variation at a single amino acid in a MADS-box transcription factor switches its ability to specify male and female reproductive organs by altering its repertoire of protein–protein interactions. However, these different developmental fates are only manifest because of an underlying variation in the expression pattern of interacting proteins. This shows that the morphological outcomes of changes to protein sequence and gene expression must be interpreted in the context of the wider regulatory network. It also suggests an explanation for the surprisingly widespread duplications of some of the floral transcription factors.

‣ Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing

Deng, Xian; Gu, Lianfeng; Liu, Chunyan; Lu, Tiancong; Lu, Falong; Lu, Zhike; Cui, Peng; Pei, Yanxi; Wang, Baichen; Hu, Songnian; Cao, Xiaofeng
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator FLOWERING LOCUS KH DOMAIN (FLK) in atprmt5 mutants reduce its functional transcript and protein levels...

‣ HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication

Izumi, Taisuke; Io, Katsuhiro; Matsui, Masashi; Shirakawa, Kotaro; Shinohara, Masanobu; Nagai, Yuya; Kawahara, Masahiro; Kobayashi, Masayuki; Kondoh, Hiroshi; Misawa, Naoko; Koyanagi, Yoshio; Uchiyama, Takashi; Takaori-Kondo, Akifumi
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Viral infectivity factor, an accessory protein encoded in the HIV-1 genome, induces G2 cell cycle arrest; however, the biological significance and mechanism(s) remain totally unclear. Here we demonstrate that the TP53 pathway is involved in Vif-mediated G2 cell cycle arrest. Vif enhances the stability and transcriptional activity of TP53 by blocking the MDM2-mediated ubiquitination and nuclear export of TP53. Furthermore, Vif causes G2 cell cycle arrest in a TP53-dependent manner. HXB2 Vif lacks these activities toward TP53 and cannot induce G2 cell cycle arrest. Using mutagenesis, we demonstrate that the critical residues for this function are located in the N-terminal region of Vif. Finally, we construct a mutant NL4-3 virus with an NL4-3/HXB2 chimeric Vif defective for the ability to induce cell cycle arrest and show that the mutant virus replicates less effectively than the wild-type NL4-3 virus in T cells expressing TP53. These data imply that Vif induces G2 cell cycle arrest through functional interaction with the TP53/MDM2 axis and that the G2 cell cycle arrest induced by Vif has a positive effect on HIV-1 replication. This report demonstrates the molecular mechanisms and the biological significance of Vif-mediated G2 cell cycle arrest for HIV-1 infection.

‣ Impact of the human circadian system, exercise, and their interaction on cardiovascular function

Scheer, Frank A. J. L.; Hu, Kun; Evoniuk, Heather; Kelly, Erin E.; Malhotra, Atul; Hilton, Michael F.; Shea, Steven A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The risk of adverse cardiovascular events peaks in the morning (≈9:00 AM) with a secondary peak in the evening (≈8:00 PM) and a trough at night. This pattern is generally believed to be caused by the day/night distribution of behavioral triggers, but it is unknown whether the endogenous circadian system contributes to these daily fluctuations. Thus, we tested the hypotheses that the circadian system modulates autonomic, hemodynamic, and hemostatic risk markers at rest, and that behavioral stressors have different effects when they occur at different internal circadian phases. Twelve healthy adults were each studied in a 240-h forced desynchrony protocol in dim light while standardized rest and exercise periods were uniformly distributed across the circadian cycle. At rest, there were large circadian variations in plasma cortisol (peak-to-trough ≈85% of mean, peaking at a circadian phase corresponding to ≈9:00 AM) and in circulating catecholamines (epinephrine, ≈70%; norepinephrine, ≈35%, peaking during the biological day). At ≈8:00 PM, there was a circadian peak in blood pressure and a trough in cardiac vagal modulation. Sympathetic variables were consistently lowest and vagal markers highest during the biological night. We detected no simple circadian effect on hemostasis...

‣ Structure of the bacteriophage T4 long tail fiber receptor-binding tip

Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity.

‣ Neural signatures of autism

Kaiser, Martha D.; Hudac, Caitlin M.; Shultz, Sarah; Lee, Su Mei; Cheung, Celeste; Berken, Allison M.; Deen, Ben; Pitskel, Naomi B.; Sugrue, Daniel R.; Voos, Avery C.; Saulnier, Celine A.; Ventola, Pamela; Wolf, Julie M.; Klin, Ami; Vander Wyk, Brent C.;
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Functional magnetic resonance imaging of brain responses to biological motion in children with autism spectrum disorder (ASD), unaffected siblings (US) of children with ASD, and typically developing (TD) children has revealed three types of neural signatures: (i) state activity, related to the state of having ASD that characterizes the nature of disruption in brain circuitry; (ii) trait activity, reflecting shared areas of dysfunction in US and children with ASD, thereby providing a promising neuroendophenotype to facilitate efforts to bridge genomic complexity and disorder heterogeneity; and (iii) compensatory activity, unique to US, suggesting a neural system–level mechanism by which US might compensate for an increased genetic risk for developing ASD. The distinct brain responses to biological motion exhibited by TD children and US are striking given the identical behavioral profile of these two groups. These findings offer far-reaching implications for our understanding of the neural systems underlying autism.

‣ Active scaffolds for on-demand drug and cell delivery

Zhao, Xuanhe; Kim, Jaeyun; Cezar, Christine A.; Huebsch, Nathaniel; Lee, Kangwon; Bouhadir, Kamal; Mooney, David J.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Porous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand. The active porous scaffold, in the form of a macroporous ferrogel, gives a large deformation and volume change of over 70% under a moderate magnetic field. The deformation and volume variation allows a new mechanism to trigger and enhance the release of various drugs including mitoxantrone, plasmid DNA, and a chemokine from the scaffold. The porous scaffold can also act as a depot of various cells, whose release can be controlled by external magnetic fields.

‣ Socioeconomic legacy yields an invasion debt

Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E.; Hülber, Karl; Jarošík, Vojtěch; Kleinbauer, Ingrid; Krausmann, Fridolin; Kühn, Ingolf; Nentwig, Wolfgang; Vilà, Montserrat; Genovesi, Piero; Gherardi, Francesca; Desprez-Loustau,
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Globalization and economic growth are widely recognized as important drivers of biological invasions. Consequently, there is an increasing need for governments to address the role of international trade in their strategies to prevent species introductions. However, many of the most problematic alien species are not recent arrivals but were introduced several decades ago. Hence, current patterns of alien-species richness may better reflect historical rather than contemporary human activities, a phenomenon which might be called “invasion debt.” Here, we show that across 10 taxonomic groups (vascular plants, bryophytes, fungi, birds, mammals, reptiles, amphibians, fish, terrestrial insects, and aquatic invertebrates) in 28 European countries, current numbers of alien species established in the wild are indeed more closely related to indicators of socioeconomic activity from the year 1900 than to those from 2000, although the majority of species introductions occurred during the second half of the 20th century. The strength of the historical signal varies among taxonomic groups, with those possessing good capabilities for dispersal (birds, insects) more strongly associated with recent socioeconomic drivers. Nevertheless, our results suggest a considerable historical legacy for the majority of the taxa analyzed. The consequences of the current high levels of socioeconomic activity on the extent of biological invasions will thus probably not be completely realized until several decades into the future.

‣ Statistical method for revealing form-function relations in biological networks

Mugler, Andrew; Grinshpun, Boris; Franks, Riley; Wiggins, Chris H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Over the past decade, a number of researchers in systems biology have sought to relate the function of biological systems to their network-level descriptions—lists of the most important players and the pairwise interactions between them. Both for large networks (in which statistical analysis is often framed in terms of the abundance of repeated small subgraphs) and for small networks which can be analyzed in greater detail (or even synthesized in vivo and subjected to experiment), revealing the relationship between the topology of small subgraphs and their biological function has been a central goal. We here seek to pose this revelation as a statistical task, illustrated using a particular setup which has been constructed experimentally and for which parameterized models of transcriptional regulation have been studied extensively. The question “how does function follow form” is here mathematized by identifying which topological attributes correlate with the diverse possible information-processing tasks which a transcriptional regulatory network can realize. The resulting method reveals one form-function relationship which had earlier been predicted based on analytic results, and reveals a second for which we can provide an analytic interpretation. Resulting source code is distributed via http://formfunction.sourceforge.net.

‣ Mercury reduction and complexation by natural organic matter in anoxic environments

Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 μmol Hg/g HA and a partitioning coefficient >106 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

‣ Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects

Krasovitski, Boris; Frenkel, Victor; Shoham, Shy; Kimmel, Eitan
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (<100 mW·cm−2) and therapeutic, potentially cavitational (>100 mW·cm−2) spatial peak temporal average intensity levels. The cellular-level model (termed “bilayer sonophore”) combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood–brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency () and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion...

‣ Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating

Di Giuseppe, Graziano; Erra, Fabrizio; Dini, Fernando; Alimenti, Claudio; Vallesi, Adriana; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Wild-type strains of the protozoan ciliate Euplotes collected from different locations on the coasts of Antarctica, Tierra del Fuego and the Arctic were taxonomically identified as the morpho-species Euplotes nobilii, based on morphometric and phylogenetic analyses. Subsequent studies of their sexual interactions revealed that mating combinations of Antarctic and Arctic strains form stable pairs of conjugant cells. These conjugant pairs were isolated and shown to complete mutual gene exchange and cross-fertilization. The biological significance of this finding was further substantiated by demonstrating that close homology exists among the three-dimensional structures determined by NMR of the water-borne signaling pheromones that are constitutively secreted into the extracellular space by these interbreeding strains, in which these molecules trigger the switch between the growth stage and the sexual stage of the life cycle. The fact that Antarctic and Arctic E. nobilii populations share the same gene pool and belong to the same biological species provides new support to the biogeographic model of global distribution of eukaryotic microorganisms, which had so far been based exclusively on studies of morphological and phylogenetic taxonomy.

‣ Sortase-catalyzed transformations that improve the properties of cytokines

Popp, Maximilian W.; Dougan, Stephanie K.; Chuang, Tzu-Ying; Spooner, Eric; Ploegh, Hidde L.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Recombinant protein therapeutics often suffer from short circulating half-life and poor stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins, but the methods for attachment often lack specificity, resulting in loss of biological activity. Using four-helix bundle cytokines as an example, we present a general platform that uses sortase-mediated transpeptidation to facilitate site-specific attachment of PEG to extend cytokine half-life with full retention of biological activity. Covalently joining the N and C termini of proteins to obtain circular polypeptides, again executed using sortase, increases thermal stability. We combined both PEGylation and circularization by exploiting two distinct sortase enzymes and the use of a molecular suture that allows both site-specific PEGylation and covalent closure. The method developed is general, uses a set of easily accessible reagents, and should be applicable to a wide variety of proteins, provided that their termini are not involved in receptor binding or function.