Página 3 dos resultados de 4394 itens digitais encontrados em 0.013 segundos
Resultados filtrados por Publicador: Public Library of Science

‣ E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer

Simões-Correia, Joana; Figueiredo, Joana; Lopes, Rui; Stricher, François; Oliveira, Carla; Serrano, Luis; Seruca, Raquel
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 21/03/2012 Português
Relevância na Pesquisa
493.78414%
E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro...

‣ Only Missense Mutations Affecting the DNA Binding Domain of P53 Influence Outcomes in Patients with Breast Carcinoma

Végran, Frédérique; Rebucci, Magali; Chevrier, Sandy; Cadouot, Muriel; Boidot, Romain; Lizard-Nacol, Sarab
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 24/01/2013 Português
Relevância na Pesquisa
493.78414%
The presence of a TP53 gene mutation can influence tumour response to some treatments, especially in breast cancer. In this study, we analysed p53 mRNA expression, LOH at 17p13 and TP53 mutations from exons 2 to 11 in 206 patients with breast carcinoma and correlated the results with disease-free and overall survival. The observed mutations were classified according to their type and location in the three protein domains (transactivation domain, DNA binding domain, oligomerization domain) and correlated with disease-free and overall survival. In our population, neither p53 mRNA expression nor LOH correlated with outcome. Concerning TP53 mutations, 27% of tumours were mutated (53/197) and the presence of a mutation in the TP53 gene was associated with worse overall survival (p = 0.0026) but not with disease-free survival (p = 0.0697), with median survival of 80 months and 78 months, respectively. When alterations were segregated into mutation categories and locations, and related to survival, tumours harbouring mutations other than missense mutations in the DNA binding domain of P53 had the same survival profiles as wild-type tumours. Concerning missense mutations in the DNA binding domain, median disease-free and overall survival was 23 months and 35 months...

‣ Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

Vivanco, Igor; Feng, Whei L; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Thomas, Roman K; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawa
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Background: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/ 8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

‣ A Structural Systems Biology Approach for Quantifying the Systemic Consequences of Missense Mutations in Proteins

Cheng, Tammy M. K.; Goehring, Lucas; Jeffery, Linda; Lu, Yu-En; Hayles, Jacqueline; Novák, Béla; Bates, Paul A.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1) interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition) for yeast; (2) phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK) pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.