Página 30 dos resultados de 4394 itens digitais encontrados em 0.014 segundos

‣ High metastatic potential in mice inheriting a targeted p53 missense mutation

Liu, Geng; McDonnell, Timothy J.; Montes de Oca Luna, Roberto; Kapoor, Mini; Mims, Betsy; El-Naggar, Adel K.; Lozano, Guillermina
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 11/04/2000 Português
Relevância na Pesquisa
371.91992%
To understand the relevance of p53 missense mutations in vivo, we generated a mouse containing an arg-to-his substitution at p53 amino acid 172, which corresponds to the R175H hot-spot mutation in human tumors by homologous recombination. Inadvertently, this mouse contains the additional deletion of a G nucleotide at a splice junction that attenuates levels of mutant p53 to near wild-type levels. Mice heterozygous for the mutant allele differed from p53+/− mice in tumor spectrum, with a significant increase in the number of carcinomas and a slight decrease in the number of lymphomas. More importantly, the osteosarcomas and carcinomas that developed in these mutant mice frequently metastasized (69% and 40%, respectively). In contrast, metastasis is rare in osteosarcomas of p53+/− mice. Loss of heterozygosity studies of tumors indicated loss of heterozygosity in only 1 of 11 tumors. These data indicate clear differences between a p53 missense mutation and a null allele in tumorigenesis in vivo and suggest that the p53R172HΔg mutant represents a gain-of-function allele.

‣ A Missense Mutation in the fabB (β-Ketoacyl-Acyl Carrier Protein Synthase I) Gene Confers Thiolactomycin Resistance to Escherichia coli

Jackowski, Suzanne; Zhang, Yong-Mei; Price, Allen C.; White, Stephen W.; Rock, Charles O.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /05/2002 Português
Relevância na Pesquisa
371.91992%
Thiolactomycin (TLM) is an antibiotic that inhibits bacterial type II fatty acid synthesis at the condensing enzyme step, and β-ketoacyl-acyl carrier protein synthase I (FabB) is the relevant target in Escherichia coli. TLM resistance is associated with the upregulation of efflux pumps. Therefore, a tolC knockout mutant (strain ANS1) was constructed to eliminate the contribution of type I secretion systems to TLM resistance. Six independent TLM-resistant clones of strain ANS1 were isolated, and all possessed the same missense mutation in the fabB gene (T1168G) that directed the expression of a mutant protein, FabB(F390V). FabB(F390V) was resistant to TLM in vitro. Leucine is the only other amino acid found at position 390 in nature, and the Staphylococcus aureus FabF protein, which contains this substitution, was sensitive to TLM. Structural modeling predicted that the CG2 methyl group of the valine side chain interfered with the positioning of the C11 methyl on the isoprenoid side chain of TLM in the binary complex, whereas the absence of a bulky methyl group on the leucine side chain permitted TLM binding. These data illustrate that missense mutations that introduce valine at position 390 confer TLM resistance while maintaining the vital catalytic properties of FabB.

‣ Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies

Bolduc, Véronique; Marlow, Gareth; Boycott, Kym M.; Saleki, Khalil; Inoue, Hiroshi; Kroon, Johan; Itakura, Mitsuo; Robitaille, Yves; Parent, Lucie; Baas, Frank; Mizuta, Kuniko; Kamata, Nobuyuki; Richard, Isabelle; Linssen, Wim H.J.P.; Mahjneh, Ibrahim; d
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 12/02/2010 Português
Relevância na Pesquisa
372.3674%
The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual...

‣ Differential Effects of HNF-1α Mutations Associated with Familial Young-Onset Diabetes on Target Gene Regulation

Galán, Maria; García-Herrero, Carmen-Maria; Azriel, Sharona; Gargallo, Manuel; Durán, Maria; Gorgojo, Juan-Jose; Andía, Victor-Manuel; Navas, Maria-Angeles
Fonte: ScholarOne Publicador: ScholarOne
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Hepatocyte nuclear factor 1-α (HNF-1α) is a homeodomain transcription factor expressed in a variety of tissues (including liver and pancreas) that regulates a wide range of genes. Heterozygous mutations in the gene encoding HNF-1α (HNF1A) cause familial young-onset diabetes, also known as maturity-onset diabetes of the young, type 3 (MODY3). The variability of the MODY3 clinical phenotype can be due to environmental and genetic factors as well as to the type and position of mutations. Thus, functional characterization of HNF1A mutations might provide insight into the molecular defects explaining the variability of the MODY3 phenotype. We have functionally characterized six HNF1A mutations identified in diabetic patients: two novel ones, p.Glu235Gly and c-57-64delCACGCGGT;c-55G>C; and four previously described, p.Val133Met, p.Thr196Ala, p.Arg271Trp and p.Pro379Arg. The effects of mutations on transcriptional activity have been measured by reporter assays on a subset of HNF-1α target promoters in Cos7 and Min6 cells. Target DNA binding affinities have been quantified by electrophoretic mobility shift assay using bacterially expressed glutathione-S-transferase (GST)-HNF-1α fusion proteins and nuclear extracts of transfected Cos7 cells. Our functional studies revealed that mutation c-57-64delCACGCGGT;c-55G>C reduces HNF1A promoter activity in Min6 cells and that missense mutations have variable effects. Mutation p.Arg271Trp impairs HNF-1α activity in all conditions tested...

‣ Rare occurrence of DNMT3A mutations in myelodysplastic syndromes

Thol, Felicitas; Winschel, Claudia; Lüdeking, Andrea; Yun, Haiyang; Friesen, Inna; Damm, Frederik; Wagner, Katharina; Krauter, Jürgen; Heuser, Michael; Ganser, Arnold
Fonte: Ferrata Storti Foundation Publicador: Ferrata Storti Foundation
Tipo: Artigo de Revista Científica
Publicado em /12/2011 Português
Relevância na Pesquisa
372.3674%
Gene mutations and epigenetic changes have been shown to play significant roles in the pathogenesis of myelodysplastic syndromes. Recently, mutations in DNMT3A were identified in 22.1% of patients with acute myeloid leukemia. In this study, we analyzed the frequency and clinical impact of DNMT3A mutations in a cohort of 193 patients with myelodysplastic syndromes. Mutations in DNMT3A were found in 2.6% of patients. The majority of mutations were heterozygous missense mutations affecting codon R882. Patients with DNMT3A mutations were found to have a higher rate of transformation to acute myeloid leukemia. When assessing the global methylation levels in patients with mutated versus unmutated DNMT3A and healthy controls no difference in global DNA methylation levels between the two groups was seen. Our data show that in patients with myelodysplastic syndromes, DNMT3A mutations occur at a low frequency and may be a risk factor for leukemia progression.

‣ Meier–Gorlin syndrome genotype–phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis

de Munnik, Sonja A; Bicknell, Louise S; Aftimos, Salim; Al-Aama, Jumana Y; van Bever, Yolande; Bober, Michael B; Clayton-Smith, Jill; Edrees, Alaa Y; Feingold, Murray; Fryer, Alan; van Hagen, Johanna M; Hennekam, Raoul C; Jansweijer, Maaike C E; Johnson,
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Meier–Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype–phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months–47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42% predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations...

‣ Identification of Novel Mutations in HEXA Gene in Children Affected with Tay Sachs Disease from India

Mistri, Mehul; Tamhankar, Parag M.; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 18/06/2012 Português
Relevância na Pesquisa
372.3674%
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations...

‣ ENABLING CLINICAL CANCER GENOMICS FOR RARE MUTATIONS: COLD-PCR MAGNIFIES MUTATIONS PRIOR TO TARGETED AMPLICON RE-SEQUENCING

Milbury, Coren A.; Correll, Mick; Quackenbush, John; Rubio, Renee; Makrigiorgos, G. Mike
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Despite widespread interest in the application of next-generation-sequencing (NGS) to the mutation profiling of individual cancer specimens, the onset of personalized clinical genomics is currently stalled due in part to technical hurdles. As tumors are genetically-heterogeneous and often mixed with normal/stromal cells, the resulting low-abundance DNA somatic mutations often produce ambiguous results or fall below the current NGS detection limit, thus hindering mutation calling that abides to clinical sensitivity/specificity standards. Here we examine the feasibility of applying COLD-PCR, a form of PCR that magnifies selectively the mutations, to boost the detection of unknown rare somatic mutations prior to applying NGS-based amplicon re-sequencing to clinical samples. We amplified DNA from serially-diluted mutation-containing human cell-lines into wild-type (WT) DNA, as well as lung adenocarcinoma and colorectal cancer specimens using COLD-PCR or conventional PCR for comparison. Following individual amplification of TP53, KRAS, IDH1, and EGFR regions, PCR products were barcoded, pooled for library preparation and sequenced on the Illumina-HiSeq2000 platform. Regardless of sequencing depth, sequencing errors dictated a mutation-detection limit of ~1–2% mutation abundance in conventional PCR amplicons analyzed by NGS. In contrast...

‣ Spectrum of somatic mitochondrial mutations in five cancers

Larman, Tatianna C.; DePalma, Steven R.; Hadjipanayis, Angela G.; ; Protopopov, Alexei; Zhang, Jianhua; Gabriel, Stacey B.; Chin, Lynda; Seidman, Christine E.; Kucherlapati, Raju; Seidman, J. G.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Somatic mtDNA mutations have been reported in some human tumors, but their spectrum in different malignancies and their role in cancer development remain incompletely understood. Here, we describe the breadth of somatic and inherited mutations across the mitochondrial genome by sequence analyses of paired tumor and normal tissue samples from 226 individuals with five types of cancer using whole-genome data generated by The Cancer Genome Atlas Research Network. The frequencies of deleterious tumor-specific somatic mutations found in mtDNA varied across tumor types, ranging from 13% of glioblastomas to 63% of rectal adenocarcinomas. Compared with inherited mtDNA variants, somatic mtDNA mutations were enriched for nonsynonymous vs. synonymous changes (93 vs. 15; P < 2.2E−16) and were predicted to functionally impact the encoded protein. Somatic missense mutations in tumors were distributed uniformly among the mitochondrial protein genes, but 65% of somatic truncating mutations occurred in NADH dehydrogenase 5. Analysis of staging data in colon and rectal cancers revealed that the frequency of damaging mitochondrial mutations is the same in stages I and IV tumors. In summary, these data suggest that damaging somatic mtDNA mutations occur frequently (13–63%) in these five tumor types and likely confer a selective advantage in oncogenesis.

‣ INVERTED FORMIN 2 MUTATIONS WITH VARIABLE EXPRESION IN PATIENTS WITH SPORADIC AND HEREDITARY FOCAL AND SEGMENTAL GLOMERULOSCLEROSIS

Gbadegesin, Rasheed; Lavin, Peter J.; Hall, Gentzon; Bartkowiak, B; Homstad, A; Jiang, R; Wu, G; Byrd, A; Lynn, Kelvin; Wolfish, Norman; Ottati, Carolina; Stevens, Paul; Howell, David; Conlon, Peter; Winn, Michelle P.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Focal and segmental glomerulosclerosis (FSGS) is a major cause of end-stage kidney disease. Recent advances in molecular genetics show that defects in the podocyte play a major role in its pathogenesis and mutations in inverted formin 2 (INF2) cause autosomal dominant FSGS. In order to delineate the role of INF2 mutations in familial and sporadic FSGS, we sought to identify variants in a large cohort of patients with FSGS. A secondary objective was to define an approach for genetic screening in families with autosomal dominant disease. A total of 248 individuals were identified with FSGS, of whom 31 had idiopathic disease. The remaining patients clustered into 64 families encompassing 15 from autosomal recessive and 49 from autosomal dominant kindreds. There were missense mutations in 8 of the 49 families with autosomal dominant disease. Three of the detected variants were novel and all mutations were confined to exon 4 of INF2, a regulatory region responsible for 90% of all changes reported in FSGS due to INF2 mutations. Thus, in our series, INF2 mutations were responsible for 16% of all cases of autosomal dominant FSGS, with these mutations clustered in exon 4. Hence, screening for these mutations may represent a rapid, non-invasive and cost-effective method for the diagnosis of autosomal dominant FSGS.

‣ Loss-of-Function Fibroblast Growth Factor Receptor-2 Mutations in Melanoma

Gartside, Michael G.; Chen, Huaibin; Ibrahimi, Omar A.; Byron, Sara A.; Curtis, Amy V.; Wellens, Candice L.; Bengston, Ana; Yudt, Laura M.; Eliseenkova, Anna V.; Ma, Jinghong; Curtin, John A.; Hyder, Pilar; Harper, Ursula L.; Riedesel, Erica; Mann, Graham
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /01/2009 Português
Relevância na Pesquisa
372.3674%
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.

‣ ALK Kinase Domain Mutations in Primary Anaplastic Large Cell Lymphoma: Consequences on NPM-ALK Activity and Sensitivity to Tyrosine Kinase Inhibitors

Lovisa, Federica; Cozza, Giorgio; Cristiani, Andrea; Cuzzolin, Alberto; Albiero, Alessandro; Mussolin, Lara; Pillon, Marta; Moro, Stefano; Basso, Giuseppe; Rosolen, Angelo; Bonvini, Paolo
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 13/04/2015 Português
Relevância na Pesquisa
372.3674%
ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing...

‣ Novel Carboxypeptidase A6 (CPA6) Mutations Identified in Patients with Juvenile Myoclonic and Generalized Epilepsy

Sapio, Matthew R.; Vessaz, Monique; Thomas, Pierre; Genton, Pierre; Fricker, Lloyd D.; Salzmann, Annick
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 13/04/2015 Português
Relevância na Pesquisa
372.3674%
Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity...

‣ MED12 exon 2 mutations in phyllodes tumors of the breast

Nagasawa, Satoi; Maeda, Ichiro; Fukuda, Takayo; Wu, Wenwen; Hayami, Ryosuke; Kojima, Yasuyuki; Tsugawa, Ko-ichiro; Ohta, Tomohiko
Fonte: John Wiley & Sons, Ltd Publicador: John Wiley & Sons, Ltd
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Exon 2 of MED12, a subunit of the transcriptional mediator complex, has been frequently mutated in uterine leiomyomas and breast fibroadenomas; however, it has been rarely mutated in other tumors. Although the mutations were also found in uterine leiomyosarcomas, the frequency was significantly lower than in uterine leiomyomas. Here, we examined the MED12 mutation in phyllodes tumors, another biphasic tumor with epithelial and stromal components related to breast fibroadenomas. Mutations in MED12 exon 2 were analyzed in nine fibroadenomas and eleven phyllodes tumors via Sanger sequencing. A panel of cancer- and sarcoma-related genes was also analyzed using Ion Torrent next-generation sequencing. Six mutations in fibroadenomas, including those previously reported (6/9, 67%), and five mutations in phyllodes tumors (5/11, 45%) were observed. Three mutations in the phyllodes tumors were missense mutations at Gly44, which is common in uterine leiomyomas and breast fibroadenomas. In addition, two deletion mutations (in-frame c.133_144del12 and loss of splice acceptor c.100-68_137del106) were observed in the phyllodes tumors. No other recurrent mutation was observed with next-generation sequencing. Frequent mutations in MED12 exon 2 in the phyllodes tumors suggest that it may share genetic etiology with uterine leiomyoma...

‣ Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity

Korvala, Johanna; Jüppner, Harald; Mäkitie, Outi; Sochett, Etienne; Schnabel, Dirk; Mora, Stefano; Bartels, Cynthia F; Deraska, Donald; Hartikka, Heini; Ala-Kokko, Leena; Männikkö, Minna; Warman, Matthew L.; Cole, William G.
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
Background: Primary osteoporosis is a rare childhood-onset skeletal condition whose pathogenesis has been largely unknown. We have previously shown that primary osteoporosis can be caused by heterozygous missense mutations in the Low-density lipoprotein receptor-related protein 5 (LRP5) gene, and the role of LRP5 is further investigated here. Methods LRP5 was analyzed in 18 otherwise healthy children and adolescents who had evidence of osteoporosis (manifested as reduced bone mineral density i.e. BMD, recurrent peripheral fractures and/or vertebral compression fractures) but who lacked the clinical features of osteogenesis imperfecta (OI) or other known syndromes linked to low BMD. Also 51 controls were analyzed. Methods used in the genetic analyses included direct sequencing and multiplex ligation-dependent probe amplification (MLPA). In vitro studies were performed using luciferase assay and quantitative real-time polymerase chain reaction (qPCR) to examine the effect of two novel and three previously identified mutations on the activity of canonical Wnt signaling and on expression of tryptophan hydroxylase 1 (Tph1) and 5-hydroxytryptamine (5-Htr1b). Results: Two novel LRP5 mutations (c.3446 T > A; p.L1149Q and c.3553 G > A; p.G1185R) were identified in two patients and their affected family members. In vitro analyses showed that one of these novel mutations together with two previously reported mutations (p.C913fs...

‣ Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em 06/03/2015 Português
Relevância na Pesquisa
372.3674%
Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy.

‣ Nonsense mutations in the dihydrofolate reductase gene affect RNA processing.

Urlaub, G; Mitchell, P J; Ciudad, C J; Chasin, L A
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /07/1989 Português
Relevância na Pesquisa
372.3674%
Steady-state dihydrofolate reductase (dhfr) mRNA levels were decreased as a result of nonsense mutations in the dhfr gene. Thirteen DHFR-deficient mutants were isolated after treatment of Chinese hamster ovary cells with UV irradiation. The positions of most point mutations were localized by RNA heteroduplex mapping, the mutated regions were isolated by cloning or by enzymatic amplification, and base changes were determined by DNA sequencing. Two of the mutants suffered large deletions that spanned the entire dhfr gene. The remaining 11 mutations consisted of nine single-base substitutions, one double-base substitution, and one single-base insertion. All of the single-base substitutions took place at the 3' position of a pyrimidine dinucleotide, supporting the idea that UV mutagenesis proceeds through the formation of pyrimidine dimers in mammalian cells. Of the 11 point mutations, 10 resulted in nonsense codons, either directly or by a frameshift, suggesting that the selection method favored a null phenotype. An examination of steady-state RNA levels in cells carrying these mutations and a comparison with similar data from other dhfr mutants (A. M. Carothers, R. W. Steigerwalt, G. Urlaub, L. A. Chasin, and D. Grunberger, J. Mol. Biol....

‣ In vivo and in vitro functional characterization of Andersen's syndrome mutations

Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques
Fonte: Blackwell Science Inc Publicador: Blackwell Science Inc
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
372.3674%
The inward rectifier K+ channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K+ current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

‣ Calpainopathy—A Survey of Mutations and Polymorphisms

Richard, Isabelle; Roudaut, Carinne; Saenz, Amets; Pogue, Robert; Grimbergen, J. E. M. A.; Anderson, Louise V. B.; Beley, Cyriaque; Cobo, A. M.; Diego, C. de; Eymard, Bruno; Gallano, Pia; Ginjaar, H. B.; Lasa, Adriana; Pollitt, Christine; Topaloglu, Haluk
Fonte: Universidade Católica de Brasília Publicador: Universidade Católica de Brasília
Tipo: Artigo de Revista Científica Formato: Texto
Português
Relevância na Pesquisa
372.3674%
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized mainly by symmetrical and selective atrophy of the proximal limb muscles. It derives from defects in the human CAPN3 gene, which encodes the skeletal muscle–specific member of the calpain family. This report represents a compilation of the mutations and variants identified so far in this gene. To date, 97 distinct pathogenic calpain 3 mutations have been identified (4 nonsense mutations, 32 deletions/insertions, 8 splice-site mutations, and 53 missense mutations), 56 of which have not been described previously, together with 12 polymorphisms and 5 nonclassified variants. The mutations are distributed along the entire length of the CAPN3 gene. Thus far, most mutations identified represent private variants, although particular mutations have been found more frequently. Knowledge of the mutation spectrum occurring in the CAPN3 gene may contribute significantly to structure/ function and pathogenesis studies. It may also help in the design of efficient mutation-screening strategies for calpainopathies.

‣ Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease

Liu, Bei; Chen, Song-Chang; Yang, Yan-Mei; Yan, Kai; Qian, Ye-Qing; Zhang, Jun-Yu; Hu, Yu-Ting; Dong, Min-Yue; Jin, Fan; Huang, He-Feng; Xu, Chen-Ming
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em 03/12/2015 Português
Relevância na Pesquisa
372.3674%
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients.