Página 4 dos resultados de 60878 itens digitais encontrados em 0.037 segundos
Resultados filtrados por Publicador: National Academy of Sciences

‣ Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama

Dickau, Ruth; Ranere, Anthony J.; Cooke, Richard G.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.61009%
The Central American isthmus was a major dispersal route for plant taxa originally brought under cultivation in the domestication centers of southern Mexico and northern South America. Recently developed methodologies in the archaeological and biological sciences are providing increasing amounts of data regarding the timing and nature of these dispersals and the associated transition to food production in various regions. One of these methodologies, starch grain analysis, recovers identifiable microfossils of economic plants directly off the stone tools used to process them. We report on new starch grain evidence from Panama demonstrating the early spread of three important New World cultigens: maize (Zea mays), manioc (Manihot esculenta), and arrowroot (Maranta arundinacea). Maize starch recovered from stone tools at a site located in the Pacific lowlands of central Panama confirms previous archaeobotanical evidence for the use of maize there by 7800–7000 cal BP. Starch evidence from preceramic sites in the less seasonal, humid premontane forests of Chiriquí province, western Panama, shows that maize and root crops were present by 7400–5600 cal BP, several millennia earlier than previously documented. Several local starchy resources...

‣ Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome

Yin, Yanbin; Zhang, Han; Olman, Victor; Xu, Ying
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
It is generally known that bacterial genes working in the same biological pathways tend to group into operons, possibly to facilitate cotranscription and to provide stoichiometry. However, very little is understood about what may determine the global arrangement of bacterial genes in a genome beyond the operon level. Here we present evidence that the global arrangement of operons in a bacterial genome is largely influenced by the tendency that a bacterium keeps its operons encoding the same biological pathway in nearby genomic locations, and by the tendency to keep operons involved in multiple pathways in locations close to the other members of their participating pathways. We also observed that the activation frequencies of pathways also influence the genomic locations of their encoding operons, tending to have operons of the more frequently activated pathways more tightly clustered together. We have quantitatively assessed the influences on the global genomic arrangement of operons by different factors. We found that the current arrangements of operons in most of the bacterial genomes we studied tend to minimize the overall distance between consecutive operons of a same pathway across all pathways encoded in the genome.

‣ PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

‣ Episodic radiations in the fly tree of life

Wiegmann, Brian M.; Trautwein, Michelle D.; Winkler, Isaac S.; Barr, Norman B.; Kim, Jung-Wook; Lambkin, Christine; Bertone, Matthew A.; Cassel, Brian K.; Bayless, Keith M.; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Pape, Thomas; Sinc
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.61009%
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore...

‣ IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist

van de Veerdonk, Frank L.; Stoeckman, Angela K.; Wu, Gouping; Boeckermann, Aaron N.; Azam, Tania; Netea, Mihai G.; Joosten, Leo A. B.; van der Meer, Jos W. M.; Hao, Ruyi; Kalabokis, Vassili; Dinarello, Charles A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
The functional role of IL-1 family member 10, recently renamed IL-38, remains unknown. In the present study we aimed to elucidate the biological function of IL-38 and to identify its receptor. Heat-killed Candida albicans was used to stimulate memory T-lymphocyte cytokine production in freshly obtained human peripheral blood mononuclear cells from healthy subjects. The addition of recombinant IL-38 (152 amino acids) inhibited the production of T-cell cytokines IL-22 (37% decrease) and IL-17 (39% decrease). The reduction in IL-22 and IL-17 caused by IL-38 was similar to that caused by the naturally occurring IL-36 receptor antagonist (IL-36Ra) in the same peripheral blood mononuclear cells cultures. IL-8 production induced by IL-36γ was reduced by IL-38 (42% decrease) and also was reduced by IL-36Ra (73% decrease). When human blood monocyte-derived dendritic cells were used, IL-38 as well as IL-36Ra increased LPS-induced IL-6 by twofold. We screened immobilized extracellular domains of each member of the IL-1 receptor family, including the IL-36 receptor (also known as “IL-1 receptor-related protein 2”) and observed that IL-38 bound only to the IL-36 receptor, as did IL-36Ra. The dose–response suppression of IL-38 as well as that of IL-36Ra of Candida-induced IL-22 and IL-17 was not that of the classic IL-1 receptor antagonist (anakinra)...

‣ Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure

Leforestier, Amélie; Lemercier, Nicolas; Livolant, Françoise
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
Using cryoelectron microscopy of vitreous sections, we investigated in situ the ultrastructure of biological membranes, selected from several cell types for their diverse biological functions. Here we describe how to visualize the two membrane leaflets and tightly apposed membranes, lying as close as 1.1 nm apart, by tuning the imaging conditions. We show how defects in membrane stacks may be clues to resolving their structure. Details of membrane proteins are also resolved, as well as protein lattices with correlations between stacked membranes. Imaging the cell in its native hydrated state can now be done in the nanometer resolution range, which should open unique routes for investigating structure–function relationships.

‣ High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence

Chen, Jin; Dalal, Ravindra V.; Petrov, Alexey N.; Tsai, Albert; O’Leary, Seán E.; Chapin, Karen; Cheng, Janice; Ewan, Mark; Hsiung, Pei-Lin; Lundquist, Paul; Turner, Stephen W.; Hsu, David R.; Puglisi, Joseph D.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
Zero-mode waveguides (ZMWs) provide a powerful technology for studying single-molecule real-time dynamics of biological systems. However, difficulties in instrumental implementation and ZMW fabrication prevented their widespread use. Here, we modify a commercially available ZMW-based DNA sequencer for use as a multipurpose single-molecule fluorescence instrument. The instrumentation presented here allows access to ZMWs for the general biophysics community for high-throughput multiplexed dynamics of single biological molecules.

‣ Three-dimensionally printed biological machines powered by skeletal muscle

Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J.; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H. Harry; Saif, M. Taher A.; Bashir, Rashid
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
Cell-based soft robotic devices could have a transformative impact on our ability to design machines and systems that can dynamically sense and respond to a range of complex environmental signals. We demonstrate innovative advancements in biomaterials, tissue engineering, and 3D printing, as well as an integration of these technologies, to forward engineer a controllable centimeter-scale biological machine capable of locomotion on a surface in fluid. Due in part to their elastic nature and the living components that can permit a dynamic response to environmental and applied stimuli, these biological machines can have diverse applications and represent a significant advancement toward high-level functional control over soft biorobotic systems.

‣ Newly discovered sister lineage sheds light on early ant evolution

Rabeling, Christian; Brown, Jeremy M.; Verhaagh, Manfred
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.61009%
Ants are the world's most conspicuous and important eusocial insects and their diversity, abundance, and extreme behavioral specializations make them a model system for several disciplines within the biological sciences. Here, we report the discovery of a new ant that appears to represent the sister lineage to all extant ants (Hymenoptera: Formicidae). The phylogenetic position of this cryptic predator from the soils of the Amazon rainforest was inferred from several nuclear genes, sequenced from a single leg. Martialis heureka (gen. et sp. nov.) also constitutes the sole representative of a new, morphologically distinct subfamily of ants, the Martialinae (subfam. nov.). Our analyses have reduced the likelihood of long-branch attraction artifacts that have troubled previous phylogenetic studies of early-diverging ants and therefore solidify the emerging view that the most basal extant ant lineages are cryptic, hypogaeic foragers. On the basis of morphological and phylogenetic evidence we suggest that these specialized subterranean predators are the sole surviving representatives of a highly divergent lineage that arose near the dawn of ant diversification and have persisted in ecologically stable environments like tropical soils over great spans of time.

‣ Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity

Paschos, Athanasios; Patey, Gilles; Sivanesan, Durga; Gao, Chan; Bayliss, Richard; Waksman, Gabriel; O'Callaghan, David; Baron, Christian
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.675503%
VirB8-like proteins are essential components of type IV secretion systems, bacterial virulence factors that mediate the translocation of effector molecules from many bacterial pathogens into eukaryotic cells. Based on cell biological, genetic, and x-ray crystallographic data, VirB8 was proposed to undergo multiple protein–protein interactions to mediate assembly of the translocation machinery. Here we report the results of a structure–function analysis of the periplasmic domain of VirB8 from the mammalian pathogen Brucella suis, which identifies amino acid residues required for three protein–protein interactions. VirB8 variants changed at residues proposed to be involved in dimerization, and protein–protein interactions were purified and characterized in vitro and in vivo. Changes at M102, Y105, and E214 affected the self-association as measured by analytical ultracentrifugation and gel filtration. The interaction with B. suis VirB10 was reduced by changes at T201, and change at R230 inhibited the interaction with VirB4 in vitro. The in vivo functionality of VirB8 variants was determined by complementation of growth in macrophages by a B. suis virB8 mutant and by using a heterologous assay of type IV secretion system assembly in Agrobacterium tumefaciens. Changes at Y105...