Página 4 dos resultados de 60878 itens digitais encontrados em 0.025 segundos
Resultados filtrados por Publicador: The National Academy of Sciences of the USA

‣ Coordination dynamics of biological zinc “clusters” in metallothioneins and in the DNA-binding domain of the transcription factor Gal4

Maret, Wolfgang; Larsen, Kjeld S.; Vallee, Bert L.
Fonte: The National Academy of Sciences of the USA Publicador: The National Academy of Sciences of the USA
Tipo: Artigo de Revista Científica
Publicado em 18/03/1997 Português
Relevância na Pesquisa
551.23344%
The almost universal appreciation for the importance of zinc in metabolism has been offset by the considerable uncertainty regarding the proteins that store and distribute cellular zinc. We propose that some zinc proteins with so-called zinc cluster motifs have a central role in zinc distribution, since they exhibit the rather exquisite properties of binding zinc tightly while remaining remarkably reactive as zinc donors. We have used zinc isotope exchange both to probe the coordination dynamics of zinc clusters in metallothionein, the small protein that has the highest known zinc content, and to investigate the potential function of zinc clusters in cellular zinc distribution. When mixed and incubated, metallothionein isoproteins-1 and -2 rapidly exchange zinc, as demonstrated by fast chromatographic separation and radiometric analysis. Exchange kinetics exhibit two distinct phases (kfast ≃ 5000 min−1·M−1; kslow ≃ 200 min−1·M−1, pH 8.6, 25°C) that are thought to reflect exchange between the three-zinc clusters and between the four-zinc clusters, respectively. Moreover, we have observed and examined zinc exchange between metallothionein-2 and the Gal4 protein (k ≃ 800 min−1·M−1, pH 8.0, 25°C), which is a prototype of transcription factors with a two-zinc cluster. This reaction constitutes the first experimental example of intermolecular zinc exchange between heterologous proteins. Such kinetic reactivity distinguishes zinc in biological clusters from zinc in the coordination environment of zinc enzymes...

‣ Coexpression of nuclear receptor partners increases their solubility and biological activities

Li, Chuan; Schwabe, John W. R.; Banayo, Ester; Evans, Ronald M.
Fonte: The National Academy of Sciences of the USA Publicador: The National Academy of Sciences of the USA
Tipo: Artigo de Revista Científica
Publicado em 18/03/1997 Português
Relevância na Pesquisa
551.23344%
The biological activities of the retinoids are mediated by two nuclear hormone receptors: the retinoic acid receptor (RAR) and the retinoid-X receptor (RXR). RXR (and its insect homologue ultraspiracle) is a common heterodimeric partner for many other nuclear receptors, including the insect ecdysone receptor. As part of a continuing analysis of nuclear receptor function, we noticed that, whereas RXR can be readily expressed in Escherichia coli to produce soluble protein, many of its heterodimeric partners cannot. For example, overexpression of RAR results mostly in inclusion bodies with the residual soluble component unable to interact with RXR or ligand efficiently. Similar results are seen with other RXR/ultraspiracle partners. To overcome these problems, we designed a novel double cistronic vector to coexpress RXR and its partner ligand-binding domains in the same bacterial cell. This resulted in a dramatic increase in production of soluble and apparently stable heterodimer. Hormone-binding studies using the purified RXR–RAR heterodimer reveal increased ligand-binding capacity of both components of 5- to 10-fold, resulting in virtually complete functionality. Based on these studies we find that bacterially expressed receptors can exist in one of three distinct states: insoluble...

‣ Effect of protein dynamics on biological electron transfer

Daizadeh, Iraj; Medvedev, Emile S.; Stuchebrukhov, Alexei A.
Fonte: The National Academy of Sciences of the USA Publicador: The National Academy of Sciences of the USA
Tipo: Artigo de Revista Científica
Publicado em 15/04/1997 Português
Relevância na Pesquisa
551.23344%
Computer simulations of the effect of protein dynamics on the long distance tunneling mediated by the protein matrix have been carried out for a Ru-modified (His 126) azurin molecule. We find that the tunneling matrix element is a sensitive function of the atomic configuration of the part of the protein matrix in which tunneling currents (pathways) are localized. Molecular dynamics simulations show that fluctuations of the matrix element can occur on a time scale as short as 10 fs. These short time fluctuations are an indication of a strong dynamic coupling of a tunneling electron to vibrational motions of the protein nuclear coordinates. The latter results in a modification of the conventional Marcus picture of electron transfer in proteins. The new element in the modified theory is that the tunneling electron is capable of emitting or absorbing vibrational energy (phonons) from the medium. As a result, some biological reactions may occur in an activationless fashion. An analytical theoretical model is proposed to account for thermal fluctuations of the medium in long distance electron transfer reactions. The model shows that, at long distances, the phonon-modified inelastic tunneling always dominates over the conventional elastic tunneling.

‣ Optical trapping and manipulation of neutral particles using lasers

Ashkin, Arthur
Fonte: The National Academy of Sciences of the USA Publicador: The National Academy of Sciences of the USA
Tipo: Artigo de Revista Científica
Publicado em 13/05/1997 Português
Relevância na Pesquisa
551.2488%
The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered.

‣ Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: Evidence from targeted mutations

Schwarz, Martin; Alvarez-Bolado, Gonzalo; Urbánek, Pavel; Busslinger, Meinrad; Gruss, Peter
Fonte: The National Academy of Sciences of the USA Publicador: The National Academy of Sciences of the USA
Tipo: Artigo de Revista Científica
Publicado em 23/12/1997 Português
Relevância na Pesquisa
551.23344%
The development of two major subdivisions of the vertebrate nervous system, the midbrain and the cerebellum, is controlled by signals emanating from a constriction in the neural primordium called the midbrain/hindbrain organizer (Joyner, A. L. (1996) Trends Genet. 12, 15–201). The closely related transcription factors Pax-2 and Pax-5 exhibit an overlapping expression pattern very early in the developing midbrain/hindbrain junction. Experiments carried out in fish (Krauss, S., Maden, M., Holder, N. & Wilson, S. W. (1992) Nature (London) 360, 87–89) with neutralizing antibodies against Pax-b, the orthologue of Pax-2 in mouse, placed this gene family in an regulatory cascade necessary for the development of the midbrain and the cerebellum. The targeted mutation of Pax-5 has been reported to have only slight effects in the development of structures derived from the isthmic constriction, whereas the Pax-2 null mutant mice show a background-dependent phenotype with varying penetrance. To test a possible redundant function between Pax-2 and Pax-5 we analyzed the brain phenotypes of mice expressing different dosages of both genes. Our results demonstrate a conserved biological function of both proteins in midbrain/hindbrain regionalization. Additionally...