A melhor ferramenta para a sua pesquisa, trabalho e TCC!
Página 4 dos resultados de 435 itens digitais encontrados em 0.010 segundos
‣ Codificação distribuida de video digital utilizando codigos turbo e Waveletes de segunda geração; Distributed coding turbo codes and second generation wavelets
Fonte: Biblioteca Digital da Unicamp
Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado
Formato: application/pdf
Publicado em 12/01/2006
Português
Relevância na Pesquisa
37.395754%
#Wavelets (Matematica)#Teoria da codificação#Codigos de controle de erros (Teoria da informação)#Processamento de sinais - Tecnicas digitais#Wavelets (Mathematics)#Coding theory#Error-correcting codes (Information theory)#Digital signal processing
A codificação distribuída de vídeo constitui um novo paradigma em compressão de vídeo frente aos codificadores híbridos da família MPEG-x e H.26x. Nesses codificadores, a estimação de movimento é a principal etapa do processo de compressão do sinal de vídeo. Desta forma, a codificação demanda um alto custo computacional exigindo desempenho do codificador. Neste trabalho é apresentado um codec de vídeo baseado na teoria da codificação distribuída com perdas. O compressor apresentado codifica os quadros ímpares e os quadros pares separadamente utilizando códigos turbo e a transformada wavelet. O processo de decodificação é feito de forma iterativa e explora a dependência estatística entre os quadros da seqüência de vídeo original. Esta abordagem permite uma redução bastante significativa no tempo de processamento envolvido na compressão do sinal de vídeo, tornando viável a implementação deste tipo de codificador em dispositivos com recursos escassos de processamento e memória. Os resultados obtidos em simulações comprovam o bom desempenho do codec proposto em relação ao padrão estado da arte em compressão de vídeo, o H.264/AVC; Distributed video coding is a new paradigm for video compression in opposition over the existing video coding standards like MPEG-x and H.26x families. These codecs make use of motion estimation algorithms...
Link permanente para citações:
‣ Wavelets and filter banks: New results and applications
Fonte: Universidade Rice
Publicador: Universidade Rice
Português
Relevância na Pesquisa
37.395754%
Wavelet transforms provide a new technique for time-scale analysis of non-stationary signals. Wavelet analysis uses orthonormal bases in which computations can be done efficiently with multirate systems known as filter banks. This thesis develops a comprehensive set of tools for (multidimensional) multirate signal analysis and uses them to investigate two multirate systems: filter banks and transmultiplexers. Several results in filter bank theory are obtained: a new parameterization of unitary filter banks, a theory of modulated filter banks, a theory of filter banks with symmetry restrictions, reduction of the multidimensional rational sampling rate filter bank problem to the uniform sampling rate filter bank problem, solution to the completion problem for filter banks (by reducing it to the (YJBK) parameterization problem in control theory) etc. Perfect reconstruction filter banks are shown to give structured decompostions of separable Hilbert spaces. Filter banks are used to construct several classes of wavelet bases: multiplicity M wavelet tight frames and frames, regular multiplicity M orthonormal bases, modulated wavelet tight frames etc. The thesis describes the design of optimal wavelets for signal representation and the wavelet sampling theorem. Application of wavelets in signal interpolation and in the approximation of linear-translation invariant operators is investigated.
Link permanente para citações:
‣ Detecção do complexo QRS em sinais cardiacos utilizando FPGA; QRS complex detection in cardiac signals using FPGA
Fonte: Biblioteca Digital da Unicamp
Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado
Formato: application/pdf
Publicado em 22/12/2009
Português
Relevância na Pesquisa
37.395754%
#Eletrocardiograma#Wavelet (Matematica)#VHDL (Linguagem descritiva de hardware)#Electrocardiography#Wavelets (Mathematics)#VHDL (Computer hardware description language)
O eletrocardiograma (ECG) é uma ferramenta utilizada para o diagnóstico de cardiopatias e outras doenças. Este trabalho tem como objetivo a detecção do complexo QRS, com foco na onda R, que representa a contração dos ventrículos. Para isso, são apresentadas duas técnicas de processamento do sinal de ECG. A primeira utiliza o algoritmo proposto por Pan & Tompkins que consiste em um banco de filtros digitais. A segunda faz uso da transformada wavelet discreta, que permite a localização de características de sinais tanto no tempo quanto na frequência. É apresentado um comparativo da eficácia dos dois algoritmos com base na sua implementação através de FPGA, utilizando dois métodos, o processamento serial em microcontrolador programado em C e o paralelo inteiramente em VHDL, com o intuito de comparar os tempos de processamento. Os resultados sugerem que trabalhos futuros poderão ser baseados na investigação de outras famílias wavelets para a detecção do complexo QRS em sinais de ECG, bem como explorar outros métodos de implementação de filtros em FPGA; The electrocardiogram (ECG) is a tool used for diagnosis of diseases related to the heart. This work has the purpose of detecting QRS complex, focusing on the R wave...
Link permanente para citações:
‣ Detección de puntas epilépticas en señales EEG usando wavelets y redes neuronales
Fonte: Universidad EAFIT; Maestría en Matemáticas Aplicadas; Escuela de Ciencias y Humanidades. Departamento de Ciencias Básicas
Publicador: Universidad EAFIT; Maestría en Matemáticas Aplicadas; Escuela de Ciencias y Humanidades. Departamento de Ciencias Básicas
Tipo: masterThesis; Tesis de Maestría; acceptedVersion
Português
Relevância na Pesquisa
37.395754%
#Series de Fourier#Procesamiento de Señales#Redes Neuronales#Transformada de Wavelets#Tesis. Maestría en Matemáticas Aplicadas#COMUNICACIONES DIGITALES#PROCESAMIENTO DE SEÑALES#REDES NEURALES (COMPUTADORES)#PROCESAMIENTO ELECTRÓNICO DE DATOS#ONDITAS (MATEMATICAS)#SERIES DE FOURIER
Link permanente para citações:
‣ 18.335J / 6.337J Numerical Methods of Applied Mathematics I, Fall 2001; Numerical Methods of Applied Mathematics I
Fonte: MIT - Massachusetts Institute of Technology
Publicador: MIT - Massachusetts Institute of Technology
Português
Relevância na Pesquisa
37.439736%
#IEEE-standard#iterative and direct linear system solution methods#eigendecomposition and model-order reduction#fast Fourier transforms#multigrid#wavelets#other multiresolution methods#matrix sparsification#Nonlinear root finding (Newton's method)#Numerical interpolation#Numerical extrapolation
IEEE-standard, iterative and direct linear system solution methods, eigendecomposition and model-order reduction, fast Fourier transforms, multigrid, wavelets and other multiresolution methods, matrix sparsification. Nonlinear root finding (Newton's method). Numerical interpolation and extrapolation. Quadrature.
Link permanente para citações:
‣ On new families of wavelets and Gabor analysis
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 05/03/2014
Português
Relevância na Pesquisa
37.395754%
We construct two new families of wavelets: One family of frames which is well
suited for frequency localized signals and interpolates between the standard
wavelet frames and a version of a Gabor type frame. The second family is well
suited for time localized signals and interpolated between a version of a
wavelet frame and a standard Gabor frame. In particular we approximate Gabor
analysis by wavelets. Our construction is based on certain realizations of the
unitary representations of the Heisenberg group and of the affine group on
L^2(R). The main technical tool that we use for the interpolation procedures is
contraction of Lie groups representations.
Link permanente para citações:
‣ Polyharmonic Daubechies type wavelets in Image Processing and Astronomy, I
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 05/06/2010
Português
Relevância na Pesquisa
37.395754%
We introduce a new family of multivariate wavelets which are obtained by
"polyharmonic subdivision". They generalize directly the original compactly
supported Daubechies wavelets.; Comment: 6 pages, prepared for the ACM proceedings of CompSysTech 2010
Link permanente para citações:
‣ Multivariate periodic wavelets of de la Vall\'ee Poussin type
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.395754%
In this paper we present a general approach to multivariate periodic wavelets
generated by scaling functions of de la Vall\'ee Poussin type. These scaling
functions and their corresponding wavelets are determined by their Fourier
coefficients, which are sample values of a function, that can be chosen
arbitrarily smooth, even with different smoothness in each direction. This
construction generalizes the one-dimensional de la Vall\'ee Poussin means to
the multivariate case and enables the construction of wavelet systems, where
the set of dilation matrices for the two-scale relation of two spaces of the
multiresolution analysis may contain shear and rotation matrices. It further
enables the functions contained in each of the function spaces from the
corresponding series of scaling spaces to have a certain direction or set of
directions as their focus, which is illustrated by detecting jumps of certain
directional derivatives of higher order.; Comment: 29 pages, 18 figures
Link permanente para citações:
‣ Wavelets for Elliptical Waveguide Problems
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.395754%
New elliptic cylindrical wavelets are introduced, which exploit the
relationship between analysing filters and Floquet's solution of Mathieu
differential equations. It is shown that the transfer function of both
multiresolution filters is related to the solution of a Mathieu equation of odd
characteristic exponent. The number of notches of these analysing filters can
be easily designed. Wavelets derived by this method have potential application
in the fields of optics, microwaves and electromagnetism.; Comment: 5 pages, 4 figures. in: 2002 WSEAS International Conference on
Wavelet Analysis and Multirate Systems, Vouliagmeni, Greece. arXiv admin
note: substantial text overlap with arXiv:1501.07255
Link permanente para citações:
‣ Wavelets centered on a knot sequence: theory, construction, and applications
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.395754%
We develop a general notion of orthogonal wavelets `centered' on an irregular
knot sequence. We present two families of orthogonal wavelets that are
continuous and piecewise polynomial. We develop efficient algorithms to
implement these schemes and apply them to a data set extracted from an ocelot
image. As another application, we construct continuous, piecewise quadratic,
orthogonal wavelet bases on the quasi-crystal lattice consisting of the
$\tau$-integers where $\tau$ is the golden ratio. The resulting spaces then
generate a multiresolution analysis of $L^2(\mathbf{R})$ with scaling factor
$\tau$.; Comment: 37 pages, 9 figures
Link permanente para citações:
‣ Spin Wavelets on the Sphere
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.439736%
#Mathematics - Classical Analysis and ODEs#Astrophysics#Mathematics - Differential Geometry#Mathematics - Statistics Theory#42C40, 60G60, 33C55, 14C21, 83F05, 58J05
In recent years, a rapidly growing literature has focussed on the
construction of wavelet systems to analyze functions defined on the sphere. Our
purpose in this paper is to generalize these constructions to situations where
sections of line bundles, rather than ordinary scalar-valued functions, are
considered. In particular, we propose {\em needlet-type spin wavelets} as an
extension of the needlet approach recently introduced by Narcowich, Petrushev
and Ward, and then considered for more general manifolds by Geller and Mayeli.
We discuss localization properties in the real and harmonic domains, and
investigate stochastic properties for the analysis of spin random fields. Our
results are strongly motivated by cosmological applications, in particular in
connection to the analysis of Cosmic Microwave Background polarization data.; Comment: 37 pages
Link permanente para citações:
‣ Polyharmonic Daubechies type wavelets in Image Processing and Astronomy, II
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 29/06/2010
Português
Relevância na Pesquisa
37.395754%
We consider the application of the polyharmonic subdivision wavelets (of
Daubechies type) to Image Processing, in particular to Astronomical Images. The
results show an essential advantage over some standard multivariate wavelets
and a potential for better compression.; Comment: 9 pages
Link permanente para citações:
‣ Orthonormal Compactly Supported Wavelets with Optimal Sobolev Regularity
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 16/07/1998
Português
Relevância na Pesquisa
37.395754%
Numerical optimization is used to construct new orthonormal compactly
supported wavelets with Sobolev regularity exponent as high as possible among
those mother wavelets with a fixed support length and a fixed number of
vanishing moments. The increased regularity is obtained by optimizing the
locations of the roots the scaling filter has on the interval (pi/2,\pi). The
results improve those obtained by I. Daubechies [Comm. Pure Appl. Math. 41
(1988), 909-996], H. Volkmer [SIAM J. Math. Anal. 26 (1995), 1075-1087], and P.
G. Lemarie-Rieusset and E. Zahrouni [Appl. Comput. Harmon. Anal. 5 (1998),
92-105].; Comment: 18 pages, 8 figures
Link permanente para citações:
‣ The local trace function for super-wavelets
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 05/11/2005
Português
Relevância na Pesquisa
37.395754%
We define an affine structure on $\ltwor\oplus...\oplus\ltwor$ and, following
some ideas developed in \cite{Dut1}, we construct a local trace function for
this situation. This trace function is a complete invariant for a shift
invariant subspace and it has a variety of properties which make it easily
computable. The local trace is then used to give a characterization of
super-wavelets and to analyze their multiplicity function, dimension function
and spectral function. The "$n\times$" oversampling result of Chui and Shi
\cite{CS} is refined to produce super-wavelets.
Link permanente para citações:
‣ Almost Lipschitz-continuous wavelets in metric spaces via a new randomization of dyadic cubes
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 08/10/2013
Português
Relevância na Pesquisa
37.439736%
#Mathematics - Classical Analysis and ODEs#Mathematics - Functional Analysis#Mathematics - Metric Geometry#30L99, 42C40, 41A15, 60D05
In any quasi-metric space of homogeneous type, Auscher and Hyt\"onen recently
gave a construction of orthonormal wavelets with H\"older-continuity exponent
$\eta>0$. However, even in a metric space, their exponent is in general quite
small. In this paper, we show that the H\"older-exponent can be taken
arbitrarily close to 1 in a metric space. We do so by revisiting and improving
the underlying construction of random dyadic cubes, which also has other
applications.
Link permanente para citações:
‣ Orthonormal bases of regular wavelets in spaces of homogeneous type
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
37.439736%
#Mathematics - Classical Analysis and ODEs#Mathematics - Functional Analysis#Mathematics - Metric Geometry
Adapting the recently developed randomized dyadic structures, we introduce
the notion of spline function in geometrically doubling quasi-metric spaces.
Such functions have interpolation and reproducing properties as the linear
splines in Euclidean spaces. They also have H\"older regularity. This is used
to build an orthonormal basis of H\"older-continuous wavelets with exponential
decay in any space of homogeneous type. As in the classical theory, wavelet
bases provide a universal Calder\'on reproducing formula to study and develop
function space theory and singular integrals. We discuss the examples of $L^p$
spaces, BMO and apply this to a proof of the T(1) theorem. As no extra
condition {(like 'reverse doubling', 'small boundary' of balls, etc.)} on the
space of homogeneous type is required, our results extend a long line of works
on the subject.; Comment: We have made improvements to section 2 following the referees
suggestions. In particular, it now contains full proof of formerly Theorem
2.7 instead of sending back to earlier works, which makes the construction of
splines self-contained. One reference added
Link permanente para citações:
‣ Projections and Dyadic Parseval Frame MRA Wavelets
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 23/09/2014
Português
Relevância na Pesquisa
37.542107%
A classical theorem attributed to Naimark states that, given a Parseval frame
$\mathcal{B}$ in a Hilbert space $\mathcal{H}$, one can embed $\mathcal{H}$ in
a larger Hilbert space $\mathcal{K}$ so that the image of $\mathcal{B}$ is the
projection of an orthonormal basis for $\mathcal{K}$. In the present work, we
revisit the notion of Parseval frame MRA wavelets from two papers of
Paluszy\'nski, \v{S}iki\'c, Weiss, and Xiao (PSWX) and produce an analog of
Naimark's theorem for these wavelets at the level of their scaling functions.
We aim to make this discussion as self-contained as possible and provide a
different point of view on Parseval frame MRA wavelets than that of PSWX.; Comment: 19 pages
Link permanente para citações:
‣ Compressive Sensing for Polyharmonic Subdivision Wavelets With Applications to Image Analysis
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 18/04/2012
Português
Relevância na Pesquisa
37.542107%
We apply successfully the Compressive Sensing approach for Image Analysis
using the new family of Polyharmonic Subdivision wavelets. We show that this
approach provides a very efficient recovery of the images based on fewer
samples than the traditional Shannon-Nyquist paradigm. We provide the results
of experiments with PHSD wavelets and Daubechies wavelets, for the Lena image
and astronomical images.; Comment: 11 pages, 10 figures
Link permanente para citações:
‣ Wavelets on Graphs via Spectral Graph Theory
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 18/12/2009
Português
Relevância na Pesquisa
37.542107%
We propose a novel method for constructing wavelet transforms of functions
defined on the vertices of an arbitrary finite weighted graph. Our approach is
based on defining scaling using the the graph analogue of the Fourier domain,
namely the spectral decomposition of the discrete graph Laplacian $\L$. Given a
wavelet generating kernel $g$ and a scale parameter $t$, we define the scaled
wavelet operator $T_g^t = g(t\L)$. The spectral graph wavelets are then formed
by localizing this operator by applying it to an indicator function. Subject to
an admissibility condition on $g$, this procedure defines an invertible
transform. We explore the localization properties of the wavelets in the limit
of fine scales. Additionally, we present a fast Chebyshev polynomial
approximation algorithm for computing the transform that avoids the need for
diagonalizing $\L$. We highlight potential applications of the transform
through examples of wavelets on graphs corresponding to a variety of different
problem domains.
Link permanente para citações:
‣ Randomized Wavelets on Arbitrary Domains and Applications to Functional MRI Analysis
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 25/09/2013
Português
Relevância na Pesquisa
37.542107%
Wavelets have been shown to be effective bases for many classes of natural
signals and images. Standard wavelet bases have the entire vector space
$\mathbb R^n$ as their natural domain. It is fairly straightforward to adapt
these to rectangular subdomains, and there also exist constructions for domains
with more complex boundaries. However those methods are ineffective when we
deal with domains that are very arbitrary and convoluted. A particular example
of interest is the human cortex, which is the part of the human brain where all
the cognitive activity takes place. In this thesis, we use the lifting scheme
to design wavelets on arbitrary volumes, and in particular on volumes having
the structure of the human cortex. These wavelets have an element of randomness
in their construction, which allows us to repeat the analysis with many
different realizations of the wavelet bases and averaging the results, a method
that improves the power of the analysis. Next, we apply this type of wavelet
transforms to the statistical analysis to fMRI data, and we show that it
enables us to achieve greater spatial localization than other, more standard
techniques.; Comment: PhD Dissertation, Princeton University, PACM, Adviser: Ingrid
Daubechies, September 2012
Link permanente para citações: