Página 1 dos resultados de 6539 itens digitais encontrados em 0.019 segundos

‣ Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain

MARTIN, S.; OLIVEIRA, C. Lino De; QUEIROZ, F. Mello De; PARDO, L. A.; STUEHMER, W.; BEL, E. Del
Fonte: PERGAMON-ELSEVIER SCIENCE LTD Publicador: PERGAMON-ELSEVIER SCIENCE LTD
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.246978%
Eag1 (K(v)10.1) is the founding member of an evolutionarily conserved superfamily of voltage-gated K+ channels. In rats and humans Eag1 is preferentially expressed in adult brain but its regional distribution has only been studied at mRNA level and only in the rat at high resolution. The main aim of the present study is to describe the distribution of Eag1 protein in adult rat brain in comparison to selected regions of the human adult brain. The distribution of Eag1 protein was assessed using alkaline-phosphatase based immunohistochemistry. Eag1 immunoreactivity was widespread, although selective, throughout rat brain, especially noticeable in the perinuclear space of cells and proximal regions of the extensions, both in rat and human brain. To relate the results to the relative abundance of Eag1 transcripts in different regions of rat brain a reverse-transcription coupled to quantitative polymerase chain reaction (real time PCR) was performed. This real time PCR analysis showed high Eag1 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. The results indicate that Eag1 protein expression greatly overlaps with mRNA distribution in rats and humans. The physiological relevance of potassium channels in the different regions expressing Eag1 protein is discussed. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

‣ Tissue inhibitor of metalloproteinase-2 (TIMP-2) location in the ventral, lateral, dorsal and anterior lobes of rat prostate by immunohistochemistry

Delella, Flávia K.; Justulin Jr., Luis A.; Felisbino, Sérgio L.
Fonte: Universidade Estadual Paulista Publicador: Universidade Estadual Paulista
Tipo: Artigo de Revista Científica Formato: 229-234
Português
Relevância na Pesquisa
47.19918%
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a major role in extracellular matrix component degradation in several normal and abnormal tissue situations; they are also found in human seminal plasma. MMPs have been found in rat prostate secretions and are nearly lobe specific in expression pattern. The aim of this study was to evaluate whether TIMP-2, like other semen components, is expressed differently from different rat prostatic lobes. Immunohistochemical staining was performed in both young and adult rat ventral (VP), lateral (LP), dorsal (DP), and anterior (AP) prostatic lobes and confirmed by western blotting. TIMP-2 expression was found in the epithelial cells in the following sequence: LP > AP > DP > VP, in both young and adult rats. In this study, 100% of adult LP presented histological signs of prostatitis, where TIMP-2 immunostaining was positive in normal epithelium even with intraluminal neutrophils, but was reduced or absent in the epithelium with intraepithelial leukocytes or with periductal stroma disorganization associated with mononuclear cell infiltration. However, TIMP-2 expression in LP was not induced by prostatitis, since younger rat LPs were also strongly TIMP-2 positive. The distal and intermediate VP regions were TIMP-2 negative...

‣ Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia.

López-López, J R; González, C; Pérez-García, M T
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/03/1997 Português
Relevância na Pesquisa
47.32748%
1. The electrical properties of chemoreceptor cells from neonatal rat and adult rabbit carotid bodies (CBs) are strikingly different. These differences have been suggested to be developmental and/or species related. To distinguish between the two possibilities, the whole-cell configuration of the patch-clamp technique was used to characterize the ionic currents present in isolated chemoreceptor cells from adult rat CBs. Since hypoxia-induced inhibition of O2-sensitive K+ currents is considered a crucial step in O2 chemoreception, the effect of hypoxia on the adult rat chemoreceptor cell currents was also studied. 2. Outward currents were carried mainly by K+, and two different components could be distinguished: a Ca(2+)-dependent K+ current (IK(Ca)) sensitive to Cd2+ and charybdotoxin (CTX), and a Ca(2+)-insensitive, voltage-dependent K+ current (IK(V)). IK(V) showed a slow voltage-dependent activation (time constant (tau) of 87.4 ms at -20 mV and 8.8 ms at +60 mV) and a very slow inactivation, described by the sum of two exponentials (tau 1 = 684 +/- 150 ms and tau 2 = 4.96 +/- 0.76 s at + 30 mV), that was almost voltage insensitive. The kinetic and pharmacological properties of IK(V) are typical of a delayed rectifier K+ channel. 3. Voltage-dependent Ca2+ currents (ICa) were present in nineteen of twenty-seven cells. TTX-sensitive Na+ currents were also observed in about 10% of the cells. 4. Low PO2 (< 10 mmHg) reduced the whole outward current amplitude by 22.17 +/- 1.96% (n = 27) at +20 mV. This effect was absent in the presence of Cd2+. Since low PO2 did not affect ICa...

‣ Acetoacetate metabolism in infant and adult rat brain in vitro

Itoh, T.; Quastel, J. H.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /02/1970 Português
Relevância na Pesquisa
47.62045%
1. Acetoacetate or dl-β-hydroxybutyrate increases the rate of oxygen consumption to a smaller extent than that brought about by glucose or pyruvate in adult rat brain-cortex slices but to the same extent as that in infant rat brain-cortex slices. 2. The rate of 14CO2 evolution from [1-14C]glucose considerably exceeds that from [6-14C]glucose in respiring infant rat brain-cortex slices, in contrast with adult brain-cortex slices, suggesting that the hexose monophosphate shunt operates at a greater rate in the infant rat brain than in the adult rat brain. 3. The rate of 14CO2 evolution from [3-14C]acetoacetate or dl-β-hydroxy[3-14C]butyrate, in the absence of glucose, is the same in infant rat brain slices as in adult rat brain slices. It exceeds that from [2-14C]glucose in infant rat brain but is less than that from [2-14C]glucose in adult rat brain. 4. Acetoacetate is oxidized in the brain through the operation of the citric acid cycle, as shown by the accelerating effect of glucose on acetoacetate oxidation in adult brain slices, by the inhibitory effects of malonate in both infant and adult brain slices and by its conversion into glutamate and related amino acids in both tissues. 5. Acetoacetate does not affect glucose utilization in adult or infant brain slices. It inhibits the rate of 14CO2 formation from [2-14C]glucose or [U-14C]-glucose the effect not being wholly due to isotopic dilution. 6. Acetoacetate inhibits non-competitively the oxidation of [1-14C]pyruvate...

‣ Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase.

Markou, Thomais; Lazou, Antigone
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/08/2002 Português
Relevância na Pesquisa
47.20832%
G-protein-coupled receptor agonists are powerful stimulators of mitogen-activated protein kinase (MAPK) cascades in cardiac myocytes. However, little is known regarding the physiological activation of enzymes downstream of MAPKs. We examined the activation of mitogen- and stress-activated protein kinase-1 (MSK1), a downstream target of MAPKs, in adult rat cardiac myocytes by phenylephrine and endothelin-1. Both agonists induced the phosphorylation of MSK1 at Thr-581 and Ser-376 but not at Ser-360. Maximal phosphorylation was observed at 10-15 min after stimulation and it correlated with increased activity. Maximal activation of MSK1 in adult cardiomyocytes temporally coincided with maximal p38 MAPK activation while activation of the extracellular-signal-regulated kinase (ERK) cascade was more rapid. Phosphorylation and activation of MSK1 was completely inhibited by either PD98059 (ERK1/2 pathway inhibitor) or SB203580 (p38 MAPK inhibitor) alone. These data demonstrate that MSK1 activation in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires the simultaneous activation of both the ERK and p38 MAPK pathways. However, the lack of phosphorylation at Ser-360, an identified phosphorylation site targeted by MAPKs...

‣ Localisation of chromogranin A and B, met-enkephalin-arg6-gly7-leu8 and PGP9.5-like immunoreactivity in the developing and adult rat adrenal medulla and extra-adrenal chromaffin tissue.

Kent, C; Coupland, R E
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /10/1989 Português
Relevância na Pesquisa
47.196484%
The localisation of chromogranins A and B, met-enkephalin-arg6-gly7-leu8 (met-enk 8) and protein gene product 9.5 (PGP 9.5) in the adrenal medulla and extra-adrenal chromaffin tissue has been studied in the developing rat by immunogold-silver staining. In the adult rat adrenal the cytoplasm of all medullary chromaffin cells showed a positive response with chromogranin A and B; in each case occasional groups of cells with a low reactivity that may have been NA cells were seen. Chromogranin A was first detected in adrenal medullary and extra-adrenal chromaffin cells at 18 days of gestation whilst chromogranin B was not detected in animals younger than 7 days. In 15 days old animals the adrenal medullary response to A and B was of the same intensity as that seen in the adult. Less than 1% of adult medullary chromaffin cells were responsive to met-enk 8 staining and medullary cells were unreactive in the fetus, with only extra-adrenal chromaffin tissue responding prenatally. During the first postnatal week immunoreactive cells appeared in the adrenal medulla in considerably greater proportions than in the adult gland. In contrast, positively stained nerve terminals associated with chromaffin cells and abundant in the adult adrenal were not detected during the first week of life. Immunoreactive nerve terminals were first seen early in the second week of life at a time when positive chromaffin cells were becoming less common. PGP 9.5 was located in all chromaffin cells of the adult adrenal and was readily detected in chromaffin cells in the adrenal and in extra-adrenal locations of the earliest stage examined (E16). Our findings suggest that the ontogenesis of the chromogranin-like immunostaining reflects the maturation of chromaffin granules and the PGP 9.5 immunostaining detected a protein common to cells of neuronal origin and expressed at an early stage of differentiation. The reciprocal relationship between the presence of enkephalins in chromaffin cells and in their presynaptic terminals merits further investigation.

‣ mGluR-evoked augmentation of receptor-mediated cyclic AMP formation in neonatal and adult rat striatum

Cartmell, Jayne; Schaffhauser, Hervé; Wichmann, Jürgen; Mutel, Vincent
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /07/1997 Português
Relevância na Pesquisa
47.16819%
The effects of selective agonists at group I, II and III metabotropic glutamate receptors (mGluRs) on adenosine A2 receptor-mediated cyclic AMP formation were compared in cross-chopped slices of adult and neonatal (8 days old) rat striatum, in the presence of 1 u ml−1 adenosine deaminase.The group II selective agonist, (2S,1R,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), elicited a potentiation of 5′-N-ethylcarboxamidoadenosine (NECA)-stimulated cyclic AMP production with similar potencies in adult (EC50 value 122±35 nM) and neonatal (EC50 value 285±6 nM) brain. In contrast, the group I selective agonist (S)-dihydroxyphenylglycine ((S)-DHPG) augmented the NECA cyclic AMP response in neonatal striatum (EC50 value 9±1 μM), but at a concentration of 100 μM, (S)-DHPG failed to affect the NECA response in adult striatal slices.The potentiation evoked by (S)-DHPG was specific for group I mGluRs as (2S,3S,4S,)-2-methyl-2-(carboxycyclopropyl)glycine (MCCG), a group II antagonist, was ineffective on the (S)-DHPG (100 μM) response at a concentration (500 μM) which reversed a similar augmentation elicited by DCG-IV (300 nM). Furthermore, a protein kinase C inhibitor (Ro 31-8220, 10 μM) markedly reversed the effect of (S)-DHPG without affecting the response to DCG-IV.The mGluR agonist (2S...

‣ A-kinase Anchoring Protein 100 (AKAP100) is Localized in Multiple Subcellular Compartments in the Adult Rat Heart

Yang, Jiacheng; Drazba, Judith A.; Ferguson, Donald G.; Bond, Meredith
Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 27/07/1998 Português
Relevância na Pesquisa
47.170493%
Stimulation of β-adrenergic receptors activates type I and II cyclic AMP–dependent protein kinase A, resulting in phosphorylation of various proteins in the heart. It has been proposed that PKA II compartmentalization by A-kinase–anchoring proteins (AKAPs) regulates cyclic AMP–dependent signaling in the cell. We investigated the expression and localization of AKAP100 in adult hearts. By immunoblotting, we identified AKAP100 in adult rat and human hearts, and showed that type I and II regulatory (RI and II) subunits of PKA are present in the rat heart. By immunofluorescence and confocal microscopy of rat cardiac myocytes and cryostat sections of rat left ventricle papillary muscles, we localized AKAP100 to the nucleus, sarcolemma, intercalated disc, and at the level of the Z-line. After double immunostaining of transverse cross-sections of the papillary muscles with AKAP100 plus α-actinin–specific antibodies or AKAP100 plus ryanodine receptor–specific antibodies, confocal images showed AKAP100 localization at the region of the transverse tubule/junctional sarcoplasmic reticulum. RI is distributed differently from RII in the myocytes. RII, but not RI, was colocalized with AKAP100 in the rat heart. Our studies suggest that AKAP100 tethers PKA II to multiple subcellular compartments for phosphorylation of different pools of substrate proteins in the heart.

‣ Posterior Hox Gene Expression and Differential Androgen Regulation in the Developing and Adult Rat Prostate Lobes

Huang, Liwei; Pu, Yongbing; Hepps, David; Danielpour, David; Prins, Gail S.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.364507%
Axis positioning and tissue determination during development involve coordinated expression of Hox genes throughout the body. The most posterior Hox gene clusters are involved in prostate organogenesis. In the present study, we characterized and compared the expression profiles of posterior (5′) Hox genes in the separate lobes of the adult rat prostate gland, the coagulating gland, seminal vesicles, and epididymis using quantitative real-time RT-PCR. These genes include Hoxa9–11, Hoxa13, Hoxd13, and Hoxb13. We identified a unique Hox code for each of these organs and propose that this contributes to the organ-specific and prostate lobe-specific identities in the adult rat. Using the ventral prostate (VP) as a model, we characterized the Hox genes expression patterns over time from birth through adulthood. Expression levels of the three Hox13 genes and Hoxa10 were significantly higher in the adult VP compared with the neonatal developing VP suggesting an important role during adult homeostasis. In contrast, Hoxa9 and Hoxa11 levels declined after morphogenesis suggesting a specific developmental role. Overall, the Hoxb13 gene exhibited the most striking temporal and organ-specific differences. Using in situ hybridization and immunohistochemistry...

‣ The role of the sarcoplasmic reticulum in neonatal uterine smooth muscle: enhanced role compared to adult rat

Noble, Karen; Wray, Susan
Fonte: Blackwell Science Inc Publicador: Blackwell Science Inc
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.196484%
Little is known about contractile activity, response to agonists or excitation-contraction coupling in neonatal smooth muscle. We have therefore investigated 10-day rat uterus to better understand these processes, and compared it to adult uterus to elucidate how control of contractility develops. Spontaneous contractions are present in the 10-day neonatal uterus, although they are not as large or as regular as those present in adult tissues. External Ca2+ entry via L-type Ca2+ channels is the sole source of Ca2+ and is essential for the spontaneous activity. The neonatal uterus was responsive to carbachol or prostaglandin F2α application; it showed a marked stimulation and a clear dissociation between the force and Ca2+ changes. Such sensitization was not apparent in adult rat myometrium. The sarcoplasmic reticulum (SR) had more releasable Ca2+ and contributed more to the response to agonists in neonatal compared to adult tissues. Thus, Ca2+ entry as opposed to SR Ca2+ release contributed much less to the uterine response to agonists in the neonatal, compared to adult tissues. Inhibition of the SR by cyclopiazonic acid also caused a more vigorous increase in Ca2+ and contractile activity, particularly frequency, in the neonatal compared to the adult uterus. Taken together these data suggest that: (1) spontaneous activity is already present by day 10...

‣ Immunohistochemical detection of connexin36 in sympathetic preganglionic and somatic motoneurons in the adult rat

Marina, Nephtali; Becker, David L.; Gilbey, Michael P.
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 30/05/2008 Português
Relevância na Pesquisa
47.16819%
Gap junctional communication in the adult CNS plays an important role in the synchronization of neuronal activities. In vitro studies have shown evidence of electrotonic coupling through gap junctions between sympathetic preganglionic motoneurons and between somatic motoneurons in the neonatal and adult rat spinal cord. Electrotonic transmission of membrane oscillations might be an important mechanism for recruitment of neurons and result in the generation of rhythmic sympathetic and somato-motor activity at the population level. Gap junctions in the adult spinal cord are constituted principally by connexin36 (Cx36). However, the distribution of Cx36 in specific neuronal populations of the spinal cord is unknown. Here, we identify Cx36-like immunoreactivity in sympathetic preganglionic and somatic motoneurons in thoracic spinal cord segments of the adult rat. For this purpose, double immunostaining against Cx36 and choline acetyltransferase (ChAT) was performed on transverse sections (20 μm) taken from spinal segments T6–T8. Cx36 punctate immunostaining was detected in the majority of ChAT-immunoreactive (-ir) neurons from lamina VII [intermediolateral cell column (IML) and intercalated cell group (IC)], lamina X [central autonomic nucleus (CA)] and in ventral horn neurons from laminae VIII and IX. Cx36 puncta were distributed in the neuronal somata and along dendritic processes. The presence of Cx36 in ChAT-ir neurons is consistent with electrical coupling between sympathetic preganglionic motoneurons and between somatic motoneurons through gap junctions in the adult spinal cord.

‣ Cellular distribution of γ-secretase subunit nicastrin in the developing and adult rat brains

Kodam, A.; Vetrivel, K.S.; Thinakaran, G.; Kar, S.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.29827%
Nicastrin and presenilin 1 are integral components of the high molecular weight γ-secretase complexes that regulate proteolytic processing of various type I membrane proteins including amyloid precursor protein and Notch. At present, there is little information regarding the cellular distribution of nicastrin in the developing or adult rat brain. We report here, using immunoblotting and immunohistochemical methods, that nicastrin in the adult rat brain is widely expressed and co-localized with presenilin 1 in select neuronal populations within all major areas, including the basal forebrain, striatum, cortex, hippocampus, amygdala, thalamus, hypothalamus, cerebellum and brainstem. We also observed dense neuropil labeling in many regions in the brain, suggesting that nicastrin gets transported to dendrites and/or axon terminals in the central nervous system. The levels of nicastrin are found to be relatively high at the early stages of postnatal development and then declined gradually to reach the adult profile. At the cellular level, nicastrin is localized predominantly in neuronal cell bodies at early postanatal stages, but is apparent both in cell bodies and dendrites/neuropil in all brain regions at the later stages. The regulation of nicastrin expression and localization during development and its distribution in a wide spectrum of neurons in the postnatal and adult rat brains provide an anatomical basis to suggest a multifunctional role for the γ-secretase complex in the developing and adult rat brains.

‣ Oxidative stress induced by the Fe2+/ascorbic acid system or model ischemia in vitro: effect of carvedilol and pyridoindole antioxidant SMe1EC2 in young and adult rat brain tissue

Gáspárová, Zdenka; Ondrejičková, Olga; Gajdošíková, Alena; Gajdošík, Andrej; Šnirc, Vladimír; Štolc, Svorad
Fonte: Slovak Toxicology Society SETOX Publicador: Slovak Toxicology Society SETOX
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.26085%
New effective strategies and new highly effective neuroprotective agents are being searched for the therapy of human stroke and cerebral ischemia. The compound SMe1EC2 is a new derivative of stobadine, with enhanced antioxidant properties compared to the maternal drug. Carvedilol, a non-selective beta-blocker, possesses besides its cardioprotective and vasculoprotective properties also an antioxidant effect. We compared the effect of carvedilol and SMe1EC2, antioxidants with a similar chemical structure, in two experimental models of oxidative stress in young and adult rat brain tissue. SMe1EC2 was found to improve the resistance of hippocampal neurons to ischemia in vitro in young and even in 18-month-old rats and inhibited formation of protein carbonyl groups induced by the Fe2+/ascorbic acid pro-oxidative system in brain cortex homogenates of young rats. Carvedilol exerted a protective effect only in the hippocampus of 2-month-old rats and that at the concentration 10-times higher than did SMe1EC2. The inhibitory effect of carvedilol on protein carbonyl formation induced by the pro-oxidative system was not proved in the cortex of either young or adult rats. An increased baseline level of the content of protein carbonyl groups in the adult versus young rat brain cortex confirmed age-related changes in neuronal tissue and may be due to increased production of reactive oxygen species and low antioxidant defense mechanisms in the adult rat brain. The results revealed the new pyridoindole SMe1EC2 to be more effective than carvedilol in neuroprotection of rat brain tissue in both experimental models involving oxidative stress.

‣ Localization of epididymal protease inhibitor in adult rat and its transcription profile in testis during postnatal development

Bian, Zeng-Hui; Zhang, Jie; Ding, Xin-Liang; Zhang, Bin; Wang, Zeng-Jun; Lu, Chun-Cheng; Song, Lin; Wang, Shou-Lin; Wang, Xin-Ru
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.246978%
To investigate the expression pattern of rat Eppin (epididymal protease inhibitor; official symbol Spinlw1), we detected mRNA transcripts and subsequent protein translation of Eppin in several sorts of tissues by RT-PCR and western blotting. Then immunohistochemistry was performed for more detailed observation. The testicular transcription level was monitored by real-time PCR throughout postnatal development. We found that rat Eppin was specifically expressed in the testis and epididymis. The testicular transcription was slight in neonatal (1-day) and infantile stages (5-, 7- and 10-day). It increased sharply thereafter, with maximum expression level (about 38-fold compared with that of 1-day old rat) detected in prepubertal stage (15-day). Then a slightly declined but stable level (about 20-fold compared with that of 1-day old rat) was kept in pubertal-early adult (30-day) and adult (60-day) stages of postnatal maturation. In the adult rat, EPPIN protein was mainly localized in the elongated spermatids and epididymal epithelial cells. Sperm in the epididymal duct were all covered with EPPIN and its level kept constant during incubation under conditions used to achieve capacitation. Its stage-specific expression in the testis suggests that EPPIN may be important during spermatogenesis especially for the spermatid elongation. The abundant production of epididymal EPPIN indicated indirectly that it might play a role in the function of the epididymis.

‣ Requirement of Retinoic Acid Receptor β for Genipin Derivative-Induced Optic Nerve Regeneration in Adult Rat Retina

Koriyama, Yoshiki; Takagi, Yusuke; Chiba, Kenzo; Yamazaki, Matsumi; Sugitani, Kayo; Arai, Kunizo; Suzuki, Hirokazu; Kato, Satoru
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 06/08/2013 Português
Relevância na Pesquisa
47.298794%
Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (IPRG001), a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO)/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2), which subsequently induced retinoic acid receptor β (RARβ) expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression...

‣ Angiotensin II upregulated the expression of microRNA-224 but not microRNA-21 in adult rat cardiac fibroblasts

NING, QILAN; JIANG, XIAOYING
Fonte: D.A. Spandidos Publicador: D.A. Spandidos
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.26085%
The role of microRNA-21 (miRNA-21, miR-21) in cardiac fibrosis remains controversial, while the role of microRNA-224 (miRNA-224, miR-224) in cardiac fibroblasts has not been reported. Angiotensin II (Ang II) is known to play a pivotal role in the pathogenesis of cardiac fibrosis. The aim of this study was to confirm whether the expression of miR-21 and miR-224 is regulated by Ang II in adult rat cardiac fibroblasts. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) were performed to measure the levels of miR-21 and miR-224 in Ang II-treated or untreated adult rat cardiac fibroblasts. The RT-PCR, qPCR and previous miRNA array results demonstrated that treatment with Ang II (100 nM) for 24 h did not induce the increase of miR-21 in cardiac fibroblasts, although the level of miR-21 in cardiac fibroblasts was not considered as low. The results of the present study also demonstrated that Ang II significantly upregulated the expression of miR-224 in adult rat cardiac fibroblasts. Bioinformatic analysis revealed that the potential target genes of miR-224 included SMAD4, SMAD5, cyclin-dependent kinase 9 and early growth response 1/2. In previous studies, it was reported that miR-224 was upregulated in tumors by promoting cell proliferation and targeting SMAD4. Those results indicated the potential roles of miR-224 in cardiac fibroblasts and cardiac fibrosis. In conclusion...

‣ Compartmentation of the β-adrenergic signal by phosphodiesterases in adult rat ventricular myocytes

Schwartz, Jesse Milo
Fonte: Quens University Publicador: Quens University
Tipo: Tese de Doutorado Formato: 876795 bytes; application/pdf
Português
Relevância na Pesquisa
67.00247%
Previous studies have suggested that phosphodiesterase (PDE) hydrolysis of cyclic adenosine monophosphate (cAMP) is important in the generation of specific and segregated cAMP signals within cells. The purpose of this study was to determine if PDE compartmentation was important in cardiac ventricular myocytes. Therefore, we investigated the effects of β-adrenergic (β-AD) stimulation with isoproterenol in the presence of cilostamide, a PDE3 inhibitor, or Ro 20-1724, a PDE4 inhibitor, on unloaded cell shortening, L-type calcium currents and intracellular calcium levels in freshly dissociated adult rat ventricular myocytes. PDE3 inhibition resulted in a 216 ± 17 % (n=8) increase in unloaded cell shortening after ten minutes of isoproterenol exposure, whereas isoproterenol produced a statistically smaller increase of 155 ± 12 % (n=8) in the presence of PDE4 inhibition. There was a non-significant trend for PDE4 inhibition to produce larger increases in calcium currents (179 ± 17 % (n=4) of controls) than PDE3 inhibition (155 ± 10 % (n=6) of controls). Both PDE3 and PDE4 inhibitors had similar effects on isoproterenol-stimulated increases of calcium transient amplitude with values of 209 ± 14 % (n=8) and 185 ± 12 % (n=8), respectively. Determination of sarcoplasmic reticulum (SR) calcium load using caffeine pulse experiments demonstrated that PDE4 inhibition and isoproterenol superfusion produced a statistically larger increase in SR-calcium loading (139 ± 9 % (n=6)) than PDE3 inhibition and isoproterenol superfusion (113 ± 9 % (n=6)). These results suggest that PDE3 may be active in proximity to the contractile apparatus of cardiac myocytes...

‣ Effect of 5'-deoxy-5'-isobutylthioadenosine on formation and release of adenosine from neonatal and adult rat ventricular myocytes.

Meghji, P; Skladanowski, A C; Newby, A C; Slakey, L L; Pearson, J D
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/05/1993 Português
Relevância na Pesquisa
47.364507%
1. Studies in rat polymorphonuclear leucocytes have suggested that 5'-deoxy-5'-isobutylthioadenosine (IBTA), an inhibitor of the IMP-selective cytosolic 5'-nucleotidase, may be used to test its role in adenosine formation in intact cells. We investigated adenosine formation in neonatal and adult rat cardiomyocytes. 2. 2-Deoxyglucose (30 mM) with oligomycin (2 micrograms/ml) induced a 90-100% fall in ATP concentration in 10 min in neonatal and 60 min in adult heart cells. Adenosine accumulation was substantially increased, accounting for 13% of the fall in ATP concentration in neonatal cells and 56% in adult cells. 3. Anti-(rat liver ecto-5'-nucleotidase) serum did not inhibit adenosine accumulation. Furthermore, dipyridamole (10 microM), a nucleoside-transport blocker, inhibited by 80% the appearance of the newly formed adenosine in the medium, showing that adenosine is produced intracellularly by both adult and neonatal-rat myocytes in response to inhibition of oxidative metabolism. 4. IBTA (3 mM) inhibited by 80% the appearance of adenosine in the medium, but did not inhibit total adenosine accumulation by neonatal-rat myocytes and only modestly inhibited total adenosine accumulation by adult myocytes. 5. IBTA, like dipyridamole...

‣ Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo

Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 14/10/2015 Português
Relevância na Pesquisa
47.196484%
Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF...

‣ Subunit Composition of Strychnine-sensitive Glycine Receptors Expressed by Adult Rat Basolateral Amygdala Neurons

McCool, Brian A.; Farroni, Jeffery S.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /10/2001 Português
Relevância na Pesquisa
47.34871%
In neonatal rats, strychnine-sensitive glycine receptors are widely expressed in the spinal cord, brainstem, and forebrain. During development, these 'neonatal' receptors are replaced by an adult isoform whose expression becomes restricted primarily to brain stem and spinal cord. Unlike most forebrain regions, functional strychnine-sensitive glycine receptors appear to persist within adult rat amygdala. However, the subunit composition of glycine receptors expressed by amygdala neurons and its relationship to the adult isoform in brain stem/spinal cord has not been precisely defined. In this report, we have utilized RT-PCR and single-cell RT-PCR to demonstrate that the ‘neonatal’ α2 subunit mRNA persists in adult rat amygdala neurons and is the predominant α subunit. We further demonstrate that native amygdala glycine receptors are relatively insensitive to the receptor antagonist picrotoxin, suggesting that α2 and β subunits may be present together in the same multi-subunit complex. We further demonstrate that α2 and β subunits cloned from adult rat amygdala can form functional channels when expressed in a heterologous system. Together, these studies highlight both the unique characteristics of strychnine-sensitive glycine receptors in the adult rat amygdala as well as the possibility that α2/β channels may represent the adult forebrain isoform of the strychnine-sensitive glycine receptor.