Página 1 dos resultados de 21739 itens digitais encontrados em 0.047 segundos

‣ Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /06/2000 Português
Relevância na Pesquisa
46.857783%
To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall.

‣ Production of Bacteriolytic Enzymes by Streptomyces globisporus Regulated by Exogenous Bacterial Cell Walls

Brönneke, Volker; Fiedler, Franz
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /03/1994 Português
Relevância na Pesquisa
46.987075%
Mutanolysin biosynthesis and pigment production in Streptomyces globisporus ATCC 21553 were stimulated by adding bacterial cell walls to the medium. The increased bacteriolytic activity in the supernatant correlated with an increased de novo synthesis of mutanolysin and was between 4- and 20-fold higher than in cultures grown without bacterial cell walls. The increase in mutanolysin synthesis was brought about by enhanced transcription of the mutanolysin gene. The stimulation was only observed in medium which contained dextrin or starch as the carbon source. Glucose abolished the stimulation and also inhibited the low constitutive synthesis of mutanolysin. The induction of lytic activity was observed to require minimally 0.4 mg of bacterial cell walls per ml, whereas 0.6 mg of bacterial cell walls per ml yielded maximal lytic activity. Further supplements of bacterial cell walls did not result in enhanced lytic activity. The stimulation could be achieved independently of the phase of growth of the Streptomyces strain. Cultures grown in the presence of bacterial cell walls exhibited a higher growth yield. However, the accelerated growth was not the reason for the increased amount of mutanolysin produced. The growth of cultures with peptidoglycan monomers added to the medium instead of cell walls was similarly increased...

‣ Enhancement of dengue virus type 2 replication in mouse macrophage cultures by bacterial cell walls, peptidoglycans, and a polymer of peptidoglycan subunits.

Hotta, H; Hotta, S; Takada, H; Kotani, S; Tanaka, S; Ohki, M
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /08/1983 Português
Relevância na Pesquisa
46.824644%
The effects of bacterial cell walls, peptidoglycans, and a water-soluble polymer of peptidoglycan subunits on dengue virus type 2 replication in cultured mouse peritoneal macrophages were studied. Pretreatment of macrophage cultures with all of test cell walls isolated from seven bacterial species for 3 days significantly enhanced the virus production in the cultures. Peptidoglycans prepared from four of the above cell walls also exerted the virus production-enhancing effects in a similar manner as the walls. A water-soluble polymer of peptidoglycan subunits which was prepared by treatment of Staphylococcus epidermidis wall peptidoglycan with an interpeptide bridge-splitting enzyme (endopeptidase) also definitely enhanced the virus production in macrophage cultures, although its activity was weaker than that of the original wall and peptidoglycan. Macrophage cultures from athymic nude mice, when treated with cell walls and peptidoglycans of S. epidermidis and Lactobacillus plantarum for 3 days, also showed an increased ability to support dengue virus type 2 replication. The infectious center assay demonstrated that the virus replication enhancement by S. epidermidis cell wall and peptidoglycan was primarily due to an increase in the number of virus-infected cells. This finding did not seem to be in conflict with the observation that macrophages treated with the above cell wall or peptidoglycan phagocytized more latex particles than did untreated macrophages. The conclusions based on the above experiments are that the treatment of mouse peritoneal macrophage cultures with bacterial cell walls and their components increases the take of dengue virus type 2 by macrophages and thus raises the virus production in the macrophage cultures.

‣ The Cell Wall of Lactic Acid Bacteria: Surface Constituents and Macromolecular Conformations

Schär-Zammaretti, Prisca; Ubbink, Job
Fonte: Biophysical Society Publicador: Biophysical Society
Tipo: Artigo de Revista Científica
Publicado em /12/2003 Português
Relevância na Pesquisa
46.931553%
A variety of strains of the genus Lactobacillus was investigated with respect to the structure, softness, and interactions of their outer surface layers in order to construct structure-property relations of the Gram-positive bacterial cell wall. The role of the conformational properties of the constituents of the outer cell-wall layers and their spatial distribution on the cell wall is emphasized. Atomic force microscopy was used to resolve the surface structure, interactions, and softness of the bacterial cell wall at nanometer-length scales and upwards. The pH-dependence of the electrophoretic mobility and a novel interfacial adhesion assay were used to analyze the average physicochemical properties of the bacterial strains. The bacterial surface is smooth when a compact layer of globular proteins constitutes the outer surface, e.g., the S-layer of L. crispatus DSM20584. In contrast, for two other S-layer containing strains (L. helveticus ATCC12046 and L. helveticus ATCC15009), the S-layer is covered by polymeric surface constituents which adopt a much more extended conformation and which confer a certain roughness to the surface. Consequently, the S-layer is important for the overall surface properties of L. crispatus, but not for the surface properties of L. helveticus. Both surface proteins (L. crispatus DSM20584) and (lipo)teichoic acids (L. johnsonii ATCC332) confer hydrophobic properties to the bacterial surface whereas polysaccharides (L. johnsonii DSM20533 and L. johnsonii ATCC 33200) render the bacterial surface hydrophilic. Using the interfacial adhesion assay...

‣ Activation of glomerular mesangial cells by gram-negative bacterial cell wall components.

Lovett, D. H.; Bursten, S. L.; Gemsa, D.; Bessler, W.; Resch, K.; Ryan, J. L.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /12/1988 Português
Relevância na Pesquisa
46.84728%
The cell walls of gram-negative bacteria contain several biologically active components, including lipopolysaccharide (LPS), lipoprotein, and protein 1. The effects of these individual components and a synthetic analog of lipoprotein, TPP, on several activation parameters of glomerular mesangial cells (MC) were examined. Prostaglandin secretion, synthesis of the autogrowth factor, mesangial interleukin-1 (IL-1), and new synthesis of cellular proteins were assessed as markers of MC activation. All bacterial cell wall components evaluated were active in varying degrees as stimulants of prostaglandin secretion. In general, PGE was the predominant product. TPP and protein 1 also induced substantial secretion of thromboxane. Each cell-wall component was effective in stimulating mesangial IL-1 secretion. The activation of MC was associated with the enhanced synthesis of many cellular proteins in addition to IL-1. Stimulation by these bacterial components was dependent on the state of the mesangial cell cycle, because nonproliferating cells did not respond to these factors. Activation of MC by gram-negative bacterial cell wall components, with release of vasoactive prostaglandins and peptide mitogens, may be responsible for some of the glomerular hemodynamic alterations and cellular proliferative events associated with sepsis or chronic bacterial infection.

‣ A Method Revealing Bacterial Cell-wall Architecture by Time-dependent Isotope Labeling and Quantitative Liquid Chromatography/Mass Spectrometry

Patti, Gary J.; Chen, Jiawei; Gross, Michael L.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 01/04/2009 Português
Relevância na Pesquisa
46.926665%
The molecular details of the biosynthesis and resulting architecture of the bacterial cell wall remain unclear but are essential to understanding the activity of glycopeptide antibiotics, the recognition of pathogens by hosts, and the processes of bacterial growth and division. Here we report a new strategy to elucidate bacterial cell-wall architecture based on time-dependent isotope labeling of bacterial cells quantified by liquid chromatography/accurate mass measurement mass spectrometry. The results allow us to track the fate of cell-wall precursors (which contain the vancomycin-binding site) in Enterococcus faecium, a leading antibiotic-resistant pathogen. By comparing isotopic enrichments of post-insertionally modified cell-wall precursors, we find that tripeptides and species without Asx bridges are specific to mature cell wall. Additionally, we find that the sequence of cell-wall maturation varies throughout a cell cycle. We suggest that actively dividing E. faecium cells have three zones of unique peptidoglycan processing. Our results reveal new organizational characteristics of the bacterial cell wall that are important to understanding tertiary structure and designing novel drugs for antibiotic-resistant pathogens.

‣ Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

Schwarz, Sandra; West, T. Eoin; Boyer, Frédéric; Chiang, Wen-Chi; Carl, Mike A.; Hood, Rachel D.; Rohmer, Laurence; Tolker-Nielsen, Tim; Skerrett, Shawn J.; Mougous, Joseph D.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.84728%
Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida...

‣ Actin Polymerization Drives Septation of Listeria monocytogenes namA Hydrolase Mutants, Demonstrating Host Correction of a Bacterial Defect▿ †

Alonzo, Francis; McMullen, P. David; Freitag, Nancy E.
Fonte: American Society for Microbiology (ASM) Publicador: American Society for Microbiology (ASM)
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.978267%
The Gram-positive bacterial cell wall presents a structural barrier that requires modification for protein secretion and large-molecule transport as well as for bacterial growth and cell division. The Gram-positive bacterium Listeria monocytogenes adjusts cell wall architecture to promote its survival in diverse environments that include soil and the cytosol of mammalian cells. Here we provide evidence for the enzymatic flexibility of the murein hydrolase NamA and demonstrate that bacterial septation defects associated with a loss of NamA are functionally complemented by physical forces associated with actin polymerization within the host cell cytosol. L. monocytogenes ΔnamA mutants formed long bacterial chains during exponential growth in broth culture; however, normal septation could be restored if mutant cells were cocultured with wild-type L. monocytogenes bacteria or by the addition of exogenous NamA. Surprisingly, ΔnamA mutants were not significantly attenuated for virulence in mice despite the pronounced exponential growth septation defect. The physical force of L. monocytogenes-mediated actin polymerization within the cytosol was sufficient to sever ΔnamA mutant intracellular chains and thereby enable the process of bacterial cell-to-cell spread so critical for L. monocytogenes virulence. The inhibition of actin polymerization by cytochalasin D resulted in extended intracellular bacterial chains for which septation was restored following drug removal. Thus...

‣ Lectin Microarray Reveals Binding Profiles of Lactobacillus casei Strains in a Comprehensive Analysis of Bacterial Cell Wall Polysaccharides▿†

Yasuda, Emi; Tateno, Hiroaki; Hirabarashi, Jun; Iino, Tohru; Sako, Tomoyuki
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /07/2011 Português
Relevância na Pesquisa
46.84728%
We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene...

‣ Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

Boudreau, Marc A.; Fisher, Jed. F.; Mobashery, Shahriar
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.86077%
Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria is discussed, followed by muropeptide sensing by eukaryotes as a crucial event to the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion.

‣ Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule

Bartley, Stephanie N.; Tzeng, Yih-Ling; Heel, Kathryn; Lee, Chiang W.; Mowlaboccus, Shakeel; Seemann, Torsten; Lu, Wei; Lin, Ya-Hsun; Ryan, Catherine S.; Peacock, Christopher; Stephens, David S.; Davies, John K.; Kahler, Charlene M.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 06/02/2013 Português
Relevância na Pesquisa
46.82474%
We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion...

‣ Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature

Renner, Lars D.; Eswaramoorthy, Prahathees; Ramamurthi, Kumaran S.; Weibel, Douglas B.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 31/12/2013 Português
Relevância na Pesquisa
46.835366%
In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i) the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii) the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact...

‣ Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A
Fonte: eLife Sciences Publications, Ltd Publicador: eLife Sciences Publications, Ltd
Tipo: Artigo de Revista Científica
Publicado em 23/06/2014 Português
Relevância na Pesquisa
46.83736%
Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

‣ A Method for High Throughput Determination of Viable Bacteria Cell Counts in 96-Well Plates

Que, Yok-Ai; Hazan, Ronen N.; Maura, Damien; Rahme, Laurence G.
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.931553%
Background: There are several methods for quantitating bacterial cells, each with advantages and disadvantages. The most common method is bacterial plating, which has the advantage of allowing live cell assessment through colony forming unit (CFU) counts but is not well suited for high throughput screening (HTS). On the other hand, spectrophotometry is adaptable to HTS applications but does not differentiate between dead and living bacteria and has low sensitivity. Results: Here, we report a bacterial cell counting method termed Start Growth Time (SGT) that allows rapid and serial quantification of the absolute or relative number of live cells in a bacterial culture in a high throughput manner. We combined the methodology of quantitative polymerase chain reaction (qPCR) calculations with a previously described qualitative method of bacterial growth determination to develop an improved quantitative method. We show that SGT detects only live bacteria and is sensitive enough to differentiate between 40 and 400 cells/mL. SGT is based on the re-growth time required by a growing cell culture to reach a threshold, and the notion that this time is proportional to the number of cells in the initial inoculum. We show several applications of SGT...

‣ Tiny cells meet big questions: a closer look at bacterial cell biology

Goley, Erin D.
Fonte: The American Society for Cell Biology Publicador: The American Society for Cell Biology
Tipo: Artigo de Revista Científica
Publicado em 15/04/2013 Português
Relevância na Pesquisa
56.885566%
While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

‣ Isolation and preparation of bacterial cell walls for compositional analysis by Ultra Performance Liquid Chromatography

Desmarais, Samantha M.; Cava, Felipe; de Pedro, Miguel A.; Huang, Kerwyn Casey
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 15/01/2014 Português
Relevância na Pesquisa
46.978267%
The bacterial cell wall is critical for the determination of cell shape during growth and division, and maintains the mechanical integrity of cells in the face of turgor pressures several atmospheres in magnitude. Across the diverse shapes and sizes of the bacterial kingdom, the cell wall is composed of peptidoglycan, a macromolecular network of sugar strands crosslinked by short peptides. Peptidoglycan's central importance to bacterial physiology underlies its use as an antibiotic target and has motivated genetic, structural, and cell biological studies of how it is robustly assembled during growth and division. Nonetheless, extensive investigations are still required to fully characterize the key enzymatic activities in peptidoglycan synthesis and the chemical composition of bacterial cell walls. High Performance Liquid Chromatography (HPLC) is a powerful analytical method for quantifying differences in the chemical composition of the walls of bacteria grown under a variety of environmental and genetic conditions, but its throughput is often limited. Here, we present a straightforward procedure for the isolation and preparation of bacterial cell walls for biological analyses of peptidoglycan via HPLC and Ultra Performance Liquid Chromatography (UPLC)...

‣ Monitoring Surface Chemical Changes in the Bacterial Cell Wall: MULTIVARIATE ANALYSIS OF CRYO-X-RAY PHOTOELECTRON SPECTROSCOPY DATA

Ramstedt, Madeleine; Nakao, Ryoma; Wai, Sun Nyunt; Uhlin, Bernt Eric; Boily, Jean-François
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
46.86077%
Gram-negative bacteria can alter the composition of the lipopolysaccharide (LPS) layer of the outer membrane as a response to different growth conditions and external stimuli. These alterations can, for example, promote attachment to surfaces and biofilm formation. The changes occur in the outermost layer of the cell and may consequently influence interactions between bacterial cells and surrounding host tissue, as well as other surfaces. Microscopic analyses, fractionation of bacterial cells, or other traditional microbiological assays have previously been used to study these alterations. These methods can, however, be time consuming and do not always give detailed chemical information about the bacterial cell surface. We here present an analytical method that provides chemical information on the outermost portion of bacterial cells with respect to protein, peptidoglycan, lipid, and polysaccharide content. The method involves cryo-x-ray photoelectron spectroscopy analyses of the outermost portion (within ∼10 nm of the surface) of intact bacterial cells followed by a multivariate curve resolution analysis of carbon spectra. It can be used as a tool for characterizing and monitoring variations in the chemical composition of bacterial cell walls or of isolated outer membrane vesicles...

‣ Bacterial cell division proteins as antibiotic targets

Den Blaauwen, Tanneke; Andreu, José M.; Monasterio Opazo, Octavio Hernán
Fonte: Elsevier Publicador: Elsevier
Tipo: Artículo de revista
Português
Relevância na Pesquisa
46.885566%
Artículo de publicación ISI; Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division. 2014 Elsevier Inc. All rights; DIVINOCELL project of the European Commission (FP7-Health- 2007-B-223431)...

‣ Bending forces plastically deform growing bacterial cell walls

Amir, Ariel; Babaeipour, Farinaz; McIntosh, Dustin B.; Nelson, David R.; Jun, Suckjoon
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
56.60589%
Cell walls define a cell shape in bacteria. They are rigid to resist large internal pressures, but remarkably plastic to adapt to a wide range of external forces and geometric constraints. Currently, it is unknown how bacteria maintain their shape. In this work, we develop experimental and theoretical approaches and show that mechanical stresses regulate bacterial cell-wall growth. By applying a precisely controllable hydrodynamic force to growing rod-shaped Escherichia coli and Bacillus subtilis cells, we demonstrate that the cells can exhibit two fundamentally different modes of deformation. The cells behave like elastic rods when subjected to transient forces, but deform plastically when significant cell wall synthesis occurs while the force is applied. The deformed cells always recover their shape. The experimental results are in quantitative agreement with the predictions of the theory of dislocation-mediated growth. In particular, we find that a single dimensionless parameter, which depends on a combination of independently measured physical properties of the cell, can describe the cell's responses under various experimental conditions. These findings provide insight into how living cells robustly maintain their shape under varying physical environments.

‣ A Genomic and Structural Study of FtsZ Function for Bacterial Cell Division

Gardner, Kiani Anela Jeniah Arkus
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2013 Português
Relevância na Pesquisa
46.835366%

The tubulin homolog FtsZ provides the cytoskeletal framework for bacterial cell division. FtsZ is an essential protein for bacterial cell division, and is the only protein necessary for Z-ring assembly and constriction force generation in liposomes in vitro. The work presented here utilizes structural and genomic analysis methods to investigate FtsZ function for cell division with three separate questions: (1) What is the function of the C-terminal linker peptide in FtsZ? (2) Are there interacting proteins other than those of the divisome that facilitate FtsZ function? (3) Do lateral contact sites exist between protofilaments in the Z ring, resulting in an organized Z-ring substructure?

The FtsZ protein has an ~50 aa linker between the protofilament-forming globular domain and the C-terminal (Ct) membrane-tethering peptide. This Ct linker is widely divergent across bacterial species, and has been thought to be an intrinsically disordered peptide (IDP). We have made chimeras where we have swapped the Escherichia coli IDP for Ct linkers from other bacteria, and even for an unrelated IDP from human &alpha-adducin. Most of these substitutions allowed for normal cell division, suggesting that sequence of the IDP did not matter -any IDP appears to work (with some exceptions). Length...