Página 20 dos resultados de 60878 itens digitais encontrados em 0.031 segundos

‣ Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism

Opperman, Charles H.; Bird, David M.; Williamson, Valerie M.; Rokhsar, Dan S.; Burke, Mark; Cohn, Jonathan; Cromer, John; Diener, Steve; Gajan, Jim; Graham, Steve; Houfek, T. D.; Liu, Qingli; Mitros, Therese; Schaff, Jennifer; Schaffer, Reenah; Scholl, El
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the free-living nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.

‣ Rapid Virulence Annotation (RVA): Identification of virulence factors using a bacterial genome library and multiple invertebrate hosts

Waterfield, Nicholas R.; Sanchez-Contreras, Maria; Eleftherianos, Ioannis; Dowling, Andrea; Yang, Guowei; Wilkinson, Paul; Parkhill, Julian; Thomson, Nicholas; Reynolds, Stuart E.; Bode, Helge B.; Dorus, Steven; ffrench-Constant, Richard H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Current sequence databases now contain numerous whole genome sequences of pathogenic bacteria. However, many of the predicted genes lack any functional annotation. We describe an assumption-free approach, Rapid Virulence Annotation (RVA), for the high-throughput parallel screening of genomic libraries against four different taxa: insects, nematodes, amoeba, and mammalian macrophages. These hosts represent different aspects of both the vertebrate and invertebrate immune system. Here, we apply RVA to the emerging human pathogen Photorhabdus asymbiotica using “gain of toxicity” assays of recombinant Escherichia coli clones. We describe a wealth of potential virulence loci and attribute biological function to several putative genomic islands, which may then be further characterized using conventional molecular techniques. The application of RVA to other pathogen genomes promises to ascribe biological function to otherwise uncharacterized virulence genes.

‣ Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells

Subramanian, Hariharan; Pradhan, Prabhakar; Liu, Yang; Capoglu, Ilker R.; Li, Xu; Rogers, Jeremy D.; Heifetz, Alexander; Kunte, Dhananjay; Roy, Hemant K.; Taflove, Allen; Backman, Vadim
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Recently, there has been a major thrust to understand biological processes at the nanoscale. Optical microscopy has been exceedingly useful in imaging cell microarchitecture. Characterization of cell organization at the nanoscale, however, has been stymied by the lack of practical means of cell analysis at these small scales. To address this need, we developed a microscopic spectroscopy technique, single-cell partial-wave spectroscopy (PWS), which provides insights into the statistical properties of the nanoscale architecture of biological cells beyond what conventional microscopy reveals. Coupled with the mesoscopic light transport theory, PWS quantifies the disorder strength of intracellular architecture. As an illustration of the potential of the technique, in the experiments with cell lines and an animal model of colon carcinogenesis we show that increase in the degree of disorder in cell nanoarchitecture parallels genetic events in the early stages of carcinogenesis in otherwise microscopically/histologically normal-appearing cells. These data indicate that this advance in single-cell optics represented by PWS may have significant biomedical applications.

‣ Sum rules and determination of exciton coupling using absorption and circular dichroism spectra of biological polymers

Burin, Alexander L.; Armbruster, Michael E.; Hariharan, Mahesh; Lewis, Frederick D.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Optical spectra of biological polymers contain important information about their structure and function in living organisms. This information can be accessed by extracting an optical interaction of monomers, i.e., their exciton coupling, from experimental data. This coupling is sensitive to molecular structure, geometry, and conformation and can be used to characterize them. However, the accurate determination of exciton coupling in important biological molecules is difficult because inhomogeneous broadening smears out the monomer interaction. We suggest a way to overcome this problem by applying exact sum rules. These sum rules are derived by establishing a straightforward relationship between integral characteristics of absorption and circular dicroism spectra, and exciton coupling. Exciton coupling between AT pairs in native DNA conformation is estimated by applying these sum rules to DNA hairpin optical spectra as V0 ∼ 0.035 eV in agreement with the earlier numerical calculations.

‣ Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

Montanier, Cedric; van Bueren, Alicia Lammerts; Dumon, Claire; Flint, James E.; Correia, Marcia A.; Prates, Jose A.; Firbank, Susan J.; Lewis, Richard J.; Grondin, Gilles G.; Ghinet, Mariana G.; Gloster, Tracey M.; Herve, Cecile; Knox, J. Paul; Talbot, Br
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly...

‣ Endometrium as an early sensor of in vitro embryo manipulation technologies

Mansouri-Attia, Nadéra; Sandra, Olivier; Aubert, Julie; Degrelle, Séverine; Everts, Robin E.; Giraud-Delville, Corinne; Heyman, Yvan; Galio, Laurent; Hue, Isabelle; Yang, Xiangzhong; Tian, X. Cindy; Lewin, Harris A.; Renard, Jean-Paul
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Implantation is crucial for placental development that will subsequently impact fetal growth and pregnancy success with consequences on postnatal health. We postulated that the pattern of genes expressed by the endometrium when the embryo becomes attached to the mother uterus could account for the final outcome of a pregnancy. As a model, we used the bovine species where the embryo becomes progressively and permanently attached to the endometrium from day 20 of gestation onwards. At that stage, we compared the endometrial genes profiles in the presence of an in vivo fertilized embryo (AI) with the endometrial patterns obtained in the presence of nuclear transfer (SCNT) or in vitro fertilized embryos (IVF), both displaying lower and different potentials for term development. Our data provide evidence that the endometrium can be considered as a biological sensor able to fine-tune its physiology in response to the presence of embryos whose development will become altered much later after the implantation process. Compared with AI, numerous biological functions and several canonical pathways with a major impact on metabolism and immune function were found to be significantly altered in the endometrium of SCNT pregnancies at implantation...

‣ Hydrogen bond dynamics in the active site of photoactive yellow protein

Sigala, Paul A.; Tsuchida, Mark A.; Herschlag, Daniel
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural studies provide limited insight into the conformational plasticity of individual hydrogen bonds or the dynamical coupling present within hydrogen bond networks. We report the NMR detection of the hydrogen-bonded protons donated by Tyr-42 and Glu-46 to the chromophore oxygen in the active site of the bacterial photoreceptor, photoactive yellow protein (PYP). We have used the NMR resonances for these hydrogen bonds to probe their conformational properties and ability to rearrange in response to nearby electronic perturbation. The detection of geometric isotope effects transmitted between the Tyr-42 and Glu-46 hydrogen bonds provides strong evidence for robust coupling of their equilibrium conformations. Incorporation of a modified chromophore containing an electron-withdrawing cyano group to delocalize negative charge from the chromophore oxygen, analogous to the electronic rearrangement detected upon photon absorption, results in a lengthening of the Tyr-42 and Glu-46 hydrogen bonds and an attenuated hydrogen bond coupling. The results herein elucidate fundamental properties of hydrogen bonds within the complex environment of a protein interior. Furthermore...

‣ Life history plasticity magnifies the ecological effects of a social wasp invasion

Wilson, Erin E.; Mullen, Lynne M.; Holway, David A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
An unresolved question in ecology concerns why the ecological effects of invasions vary in magnitude. Many introduced species fail to interact strongly with the recipient biota, whereas others profoundly disrupt the ecosystems they invade through predation, competition, and other mechanisms. In the context of ecological impacts, research on biological invasions seldom considers phenotypic or microevolutionary changes that occur following introduction. Here, we show how plasticity in key life history traits (colony size and longevity), together with omnivory, magnifies the predatory impacts of an invasive social wasp (Vespula pensylvanica) on a largely endemic arthropod fauna in Hawaii. Using a combination of molecular, experimental, and behavioral approaches, we demonstrate (i) that yellowjackets consume an astonishing diversity of arthropod resources and depress prey populations in invaded Hawaiian ecosystems and (ii) that their impact as predators in this region increases when they shift from small annual colonies to large perennial colonies. Such trait plasticity may influence invasion success and the degree of disruption that invaded ecosystems experience. Moreover, postintroduction phenotypic changes may help invaders to compensate for reductions in adaptive potential resulting from founder events and small population sizes. The dynamic nature of biological invasions necessitates a more quantitative understanding of how postintroduction changes in invader traits affect invasion processes.

‣ Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets

Hong, Xin; Hammell, Molly; Ambros, Victor; Cohen, Stephen M.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
microRNAs comprise a few percent of animal genes and have been recognized as important regulators of a diverse range of biological processes. Understanding the biological functions of miRNAs requires effective means to identify their targets. Combined efforts from computational prediction, miRNA over-expression or depletion, and biochemical purification have identified thousands of potential miRNA-target pairs in cells and organisms. Complementarity to the miRNA seed sequence appears to be a common principle in target recognition. Other features, including miRNA-target duplex stability, binding site accessibility, and local UTR structure might affect target recognition. Yet computational approaches using such contextual features have yielded largely nonoverlapping results and experimental assessment of their impact has been limited. Here, we compare two large sets of miRNA targets: targets identified using an improved Ago1 immunopurification method and targets identified among transcripts up-regulated after Ago1 depletion. We found surprisingly limited overlap between these sets. The two sets showed enrichment for target sites with different molecular, structural and functional properties. Intriguingly, we found a strong correlation between UTR length and other contextual features that distinguish the two groups. This finding was extended to all predicted microRNA targets. Distinct repression mechanisms could have evolved to regulate targets with different contextual features. This study reveals a complex relationship among different features in miRNA-target recognition and poses a new challenge for computational prediction.

‣ Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers

Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.; Klasse, Per Johan; Lu, Min; Moore, John P.; Gellman, Samuel H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining α- and β-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that α/β-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic α/β-peptides effectively block HIV-cell fusion via a mechanism comparable to that of gp41-derived α-peptides. An optimized α/β-peptide is far less susceptible to proteolytic degradation than is an analogous α-peptide. Our findings show how a two-stage design approach, in which sequence-based α→β replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.

‣ TRAF5 is a critical mediator of in vitro signals and in vivo functions of LMP1, the viral oncogenic mimic of CD40

Kraus, Zachary J.; Nakano, Hiroyasu; Bishop, Gail A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 06/10/2009 Português
Relevância na Pesquisa
451.23344%
The cytoplasmic signaling protein TNF receptor-associated factor 5 (TRAF5) has been implicated in several biological roles in Tlymphocyte responses. However, a clear connection between in vivo TRAF5 immune cell functions and specific signaling pathways has not been made. This study shows that TRAF5 associated strongly with the viral oncogenic CD40 mimic latent membrane protein 1 (LMP1), in contrast to weaker association with CD40, for which it has been shown to play a modest role. LMP1 uses specific TRAFs differently than CD40, resulting in amplified and dysregulated CD40-like activation of B lymphocytes. When the cytoplasmic domain of LMP1 is expressed as a transgenic replacement for CD40 in mouse B cells, the resulting mouse exhibits measures of B-cell hyperactivity such as splenomegaly, lymphadenopathy, elevated serum IL-6, elevated serum autoantibodies, and abnormal splenic architecture. Thus, in contrast to CD40, TRAF5 may have an important nonredundant role as a positive mediator of LMP1 signaling and functions in B cells. To test this hypothesis, mice were created that express mCD40LMP1 in place of CD40, and are either sufficient or deficient in TRAF5. Results revealed that TRAF5 plays a critical role in LMP1-mediated c-Jun kinase signaling and is required for much of the abnormal phenotype observed in mCD40LMP1 transgenic mice. This is the first report showing a major requirement for TRAF5 in signaling by a specific receptor both in vitro and in vivo...

‣ Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1

Mui Chan, Chio; Zhou, Chun; Brunzelle, Joseph S.; Huang, Raven H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Small RNAs of ≈20–30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3′-terminal nucleotides via 2′-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3′ terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies...

‣ Adaptive response by state-dependent inactivation

Friedlander, Tamar; Brenner, Naama
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus. A key mechanism that underlies this response is the slow, activity-dependent removal of responding molecules to a pool which is unavailable to respond immediately to the input. This mechanism is implemented in different ways in various biological systems and has traditionally been studied separately for each. Here we highlight the common aspects of this principle, shared by many biological systems, and suggest a unifying theoretical framework. We study theoretically a class of models which describes the general mechanism and allows us to distinguish its universal from system-specific features. We show that under general conditions, regardless of the details of kinetics, molecule availability encodes an averaging over past activity and feeds back multiplicatively on the system output. The kinetics of recovery from unavailability determines the effective memory kernel inside the feedback branch, giving rise to a variety of system-specific forms of adaptive response—precise or input-dependent, exponential or power-law—as special cases of the same model.

‣ A circadian clock in Saccharomyces cerevisiae

Eelderink-Chen, Zheng; Mazzotta, Gabriella; Sturre, Marcel; Bosman, Jasper; Roenneberg, Till; Merrow, Martha
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore...

‣ Surface-coupled proton exchange of a membrane-bound proton acceptor

Sandén, Tor; Salomonsson, Lina; Brzezinski, Peter; Widengren, Jerker
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Proton-transfer reactions across and at the surface of biological membranes are central for maintaining the transmembrane proton electrochemical gradients involved in cellular energy conversion. In this study, fluorescence correlation spectroscopy was used to measure the local protonation and deprotonation rates of single pH-sensitive fluorophores conjugated to liposome membranes, and the dependence of these rates on lipid composition and ion concentration. Measurements of proton exchange rates over a wide proton concentration range, using two different pH-sensitive fluorophores with different pKas, revealed two distinct proton exchange regimes. At high pH (> 8), proton association increases rapidly with increasing proton concentrations, presumably because the whole membrane acts as a proton-collecting antenna for the fluorophore. In contrast, at low pH (< 7), the increase in the proton association rate is slower and comparable to that of direct protonation of the fluorophore from the bulk solution. In the latter case, the proton exchange rates of the two fluorophores are indistinguishable, indicating that their protonation rates are determined by the local membrane environment. Measurements on membranes of different surface charge and at different ion concentrations made it possible to determine surface potentials...

‣ Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension

Lee, Mina; Kim, Sook Ho; Hong, Seok-Cheol
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Left-handed Z-DNA has fascinated biological scientists for decades by its extraordinary structure and potential involvement in biological phenomena. Despite its instability relative to B-DNA, Z-DNA is stabilized in vivo by negative supercoiling. A detailed understanding of Z-DNA formation is, however, still lacking. In this study, we have examined the B-Z transition in a short guanine/cytosine (GC) repeat in the presence of controlled tension and superhelicity via a hybrid technique of single-molecule FRET and magnetic tweezers. The hybrid scheme enabled us to identify the states of the specific GC region under mechanical control and trace conformational changes synchronously at local and global scales. Intriguingly, minute negative superhelicity can facilitate the B-Z transition at low tension, indicating that tension, as well as torsion, plays a pivotal role in the transition. Dynamic interconversions between the states at elevated temperatures yielded thermodynamic and kinetic constants of the transition. Our single-molecule studies shed light on the understanding of Z-DNA formation by highlighting the highly cooperative and dynamic nature of the B-Z transition.

‣ Interactome analysis of longitudinal pharyngeal infection of cynomolgus macaques by group A Streptococcus

Shea, Patrick R.; Virtaneva, Kimmo; Kupko, John J.; Porcella, Stephen F.; Barry, William T.; Wright, Fred A.; Kobayashi, Scott D.; Carmody, Aaron; Ireland, Robin M.; Sturdevant, Daniel E.; Ricklefs, Stacy M.; Babar, Imran; Johnson, Claire A.; Graham, Mora
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Relatively little is understood about the dynamics of global host–pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation...

‣ Neurons sense nanoscale roughness with nanometer sensitivity

Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The interaction between cells and nanostructured materials is attracting increasing interest, because of the possibility to open up novel concepts for the design of smart nanobiomaterials with active biological functionalities. In this frame we investigated the response of human neuroblastoma cell line (SH-SY5Y) to gold surfaces with different levels of nanoroughness. To achieve a precise control of the nanoroughness with nanometer resolution, we exploited a wet chemistry approach based on spontaneous galvanic displacement reaction. We demonstrated that neurons sense and actively respond to the surface nanotopography, with a surprising sensitivity to variations of few nanometers. We showed that focal adhesion complexes, which allow cellular sensing, are strongly affected by nanostructured surfaces, leading to a marked decrease in cell adhesion. Moreover, cells adherent on nanorough surfaces exhibit loss of neuron polarity, Golgi apparatus fragmentation, nuclear condensation, and actin cytoskeleton that is not functionally organized. Apoptosis/necrosis assays established that nanoscale features induce cell death by necrosis, with a trend directly related to roughness values. Finally, by seeding SH-SY5Y cells onto micropatterned flat and nanorough gold surfaces...

‣ Scaling of morphogen gradients by an expansion-repression integral feedback control

Ben-Zvi, Danny; Barkai, Naama
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Despite substantial size variations, proportions of the developing body plan are maintained with a remarkable precision. Little is known about the mechanisms that ensure this adaptation (scaling) of pattern with size. Most models of patterning by morphogen gradients do not support scaling. In contrast, we show that scaling arises naturally in a general feedback topology, in which the range of the morphogen gradient increases with the abundance of some diffusible molecule, whose production, in turn, is repressed by morphogen signaling. We term this mechanism “expansion–repression” and show that it can function within a wide range of biological scenarios. The expansion-repression scaling mechanism is analogous to an integral-feedback controller, a key concept in engineering that is likely to be instrumental also in maintaining biological homeostasis.

‣ Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks

Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph...