Página 22 dos resultados de 60878 itens digitais encontrados em 0.032 segundos

‣ Radiation damage in protein crystals is reduced with a micron-sized X-ray beam

Sanishvili, Ruslan; Yoder, Derek W.; Pothineni, Sudhir Babu; Rosenbaum, Gerd; Xu, Shenglan; Vogt, Stefan; Stepanov, Sergey; Makarov, Oleg A.; Corcoran, Stephen; Benn, Richard; Nagarajan, Venugopalan; Smith, Janet L.; Fischetti, Robert F.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 μm) to the smallest (0.84 μm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-μm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 μm...

‣ Targeting kidney mesangium by nanoparticles of defined size

Choi, Chung Hang J.; Zuckerman, Jonathan E.; Webster, Paul; Davis, Mark E.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Nanoparticles are being investigated for numerous medical applications and are showing potential as an emerging class of carriers for drug delivery. Investigations on how the physicochemical properties (e.g., size, surface charge, shape, and density of targeting ligands) of nanoparticles enable their ability to overcome biological barriers and reach designated cellular destinations in sufficient amounts to elicit biological efficacy are of interest. Despite proven success in nanoparticle accumulation at cellular locations and occurrence of downstream therapeutic effects (e.g., target gene inhibition) in a selected few organs such as tumor and liver, reports on effective delivery of engineered nanoparticles to other organs still remain scarce. Here, we show that nanoparticles of ~75 ± 25-nm diameters target the mesangium of the kidney. These data show the effects of particle diameter on targeting the mesangium of the kidney. Because many diseases originate from this area of the kidney, our findings establish design criteria for constructing nanoparticle-based therapeutics for targeting diseases that involve the mesangium of the kidney.

‣ Direct visualization reveals dynamics of a transient intermediate during protein assembly

Zhang, Xin; Lam, Vinh Q.; Mou, Yun; Kimura, Tetsunari; Chung, Jaeyoon; Chandrasekar, Sowmya; Winkler, Jay R.; Mayo, Stephen L.; Shan, Shu-ou
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Interactions between proteins underlie numerous biological functions. Theoretical work suggests that protein interactions initiate with formation of transient intermediates that subsequently relax to specific, stable complexes. However, the nature and roles of these transient intermediates have remained elusive. Here, we characterized the global structure, dynamics, and stability of a transient, on-pathway intermediate during complex assembly between the Signal Recognition Particle (SRP) and its receptor. We show that this intermediate has overlapping but distinct interaction interfaces from that of the final complex, and it is stabilized by long-range electrostatic interactions. A wide distribution of conformations is explored by the intermediate; this distribution becomes more restricted in the final complex and is further regulated by the cargo of SRP. These results suggest a funnel-shaped energy landscape for protein interactions, and they provide a framework for understanding the role of transient intermediates in protein assembly and biological regulation.

‣ Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica

Trivelpiece, Wayne Z.; Hinke, Jefferson T.; Miller, Aileen K.; Reiss, Christian S.; Trivelpiece, Susan G.; Watters, George M.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The West Antarctic Peninsula (WAP) and adjacent Scotia Sea support abundant wildlife populations, many of which were nearly extirpated by humans. This region is also among the fastest-warming areas on the planet, with 5–6 °C increases in mean winter air temperatures and associated decreases in winter sea-ice cover. These biological and physical perturbations have affected the ecosystem profoundly. One hypothesis guiding ecological interpretations of changes in top predator populations in this region, the “sea-ice hypothesis,” proposes that reductions in winter sea ice have led directly to declines in “ice-loving” species by decreasing their winter habitat, while populations of “ice-avoiding” species have increased. However, 30 y of field studies and recent surveys of penguins throughout the WAP and Scotia Sea demonstrate this mechanism is not controlling penguin populations; populations of both ice-loving Adélie and ice-avoiding chinstrap penguins have declined significantly. We argue in favor of an alternative, more robust hypothesis that attributes both increases and decreases in penguin populations to changes in the abundance of their main prey, Antarctic krill. Unlike many other predators in this region, Adélie and chinstrap penguins were never directly harvested by man; thus...

‣ Forming giant vesicles with controlled membrane composition, asymmetry, and contents

Richmond, David L.; Schmid, Eva M.; Martens, Sascha; Stachowiak, Jeanne C.; Liska, Nicole; Fletcher, Daniel A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Growing knowledge of the key molecular components involved in biological processes such as endocytosis, exocytosis, and motility has enabled direct testing of proposed mechanistic models by reconstitution. However, current techniques for building increasingly complex cellular structures and functions from purified components are limited in their ability to create conditions that emulate the physical and biochemical constraints of real cells. Here we present an integrated method for forming giant unilamellar vesicles with simultaneous control over (i) lipid composition and asymmetry, (ii) oriented membrane protein incorporation, and (iii) internal contents. As an application of this method, we constructed a synthetic system in which membrane proteins were delivered to the outside of giant vesicles, mimicking aspects of exocytosis. Using confocal fluorescence microscopy, we visualized small encapsulated vesicles docking and mixing membrane components with the giant vesicle membrane, resulting in exposure of previously encapsulated membrane proteins to the external environment. This method for creating giant vesicles can be used to test models of biological processes that depend on confined volume and complex membrane composition, and it may be useful in constructing functional systems for therapeutic and biomaterials applications.

‣ Structural plasticity of a transmembrane peptide allows self-assembly into biologically active nanoparticles

Tarasov, Sergey G.; Gaponenko, Vadim; Howard, O. M. Zack; Chen, Yuhong; Oppenheim, Joost J.; Dyba, Marzena A.; Subramaniam, Sriram; Lee, Youngshim; Michejda, Christopher; Tarasova, Nadya I.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Significant efforts have been devoted to the development of nanoparticular delivering systems targeting tumors. However, clinical application of nanoparticles is hampered by insufficient size homogeneity, difficulties in reproducible synthesis and manufacturing, frequent high uptake in the liver, systemic toxicity of the carriers (particularly for inorganic nanoparticles), and insufficient selectivity for tumor cells. We have found that properly modified synthetic analogs of transmembrane domains of membrane proteins can self-assemble into remarkably uniform spherical nanoparticles with innate biological activity. Self-assembly is driven by a structural transition of the peptide that adopts predominantly a beta-hairpin conformation in aqueous solutions, but folds into an alpha-helix upon spontaneous fusion of the nanoparticles with cell membrane. A 24-amino acid peptide corresponding to the second transmembrane helix of the CXCR4 forms self-assembled particles that inhibit CXCR4 function in vitro and hamper CXCR4-dependent tumor metastasis in vivo. Furthermore, such nanoparticles can encapsulate hydrophobic drugs, thus providing a delivery system with the potential for dual biological activity.

‣ Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq)

Lucks, Julius B.; Mortimer, Stefanie A.; Trapnell, Cole; Luo, Shujun; Aviran, Sharon; Schroth, Gary P.; Pachter, Lior; Doudna, Jennifer A.; Arkin, Adam P.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
New regulatory roles continue to emerge for both natural and engineered noncoding RNAs, many of which have specific secondary and tertiary structures essential to their function. Thus there is a growing need to develop technologies that enable rapid characterization of structural features within complex RNA populations. We have developed a high-throughput technique, SHAPE-Seq, that can simultaneously measure quantitative, single nucleotide-resolution secondary and tertiary structural information for hundreds of RNA molecules of arbitrary sequence. SHAPE-Seq combines selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry with multiplexed paired-end deep sequencing of primer extension products. This generates millions of sequencing reads, which are then analyzed using a fully automated data analysis pipeline, based on a rigorous maximum likelihood model of the SHAPE-Seq experiment. We demonstrate the ability of SHAPE-Seq to accurately infer secondary and tertiary structural information, detect subtle conformational changes due to single nucleotide point mutations, and simultaneously measure the structures of a complex pool of different RNA molecules. SHAPE-Seq thus represents a powerful step toward making the study of RNA secondary and tertiary structures high throughput and accessible to a wide array of scientific pursuits...

‣ Raft domains of variable properties and compositions in plasma membrane vesicles

Levental, Ilya; Grzybek, Michal; Simons, Kai
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Biological membranes are compartmentalized for functional diversity by a variety of specific protein–protein, protein–lipid, and lipid–lipid interactions. A subset of these are the preferential interactions between sterols, sphingolipids, and saturated aliphatic lipid tails responsible for liquid–liquid domain coexistence in eukaryotic membranes, which give rise to dynamic, nanoscopic assemblies whose coalescence is regulated by specific biochemical cues. Microscopic phase separation recently observed in isolated plasma membranes (giant plasma membrane vesicles and plasma membrane spheres) (i) confirms the capacity of compositionally complex membranes to phase separate, (ii) reflects the nanoscopic organization of live cell membranes, and (iii) provides a versatile platform for the investigation of the compositions and properties of the phases. Here, we show that the properties of coexisting phases in giant plasma membrane vesicles are dependent on isolation conditions—namely, the chemicals used to induce membrane blebbing. We observe strong correlations between the relative compositions and orders of the coexisting phases, and their resulting miscibility. Chemically unperturbed plasma membranes reflect these properties and validate the observations in chemically induced vesicles. Most importantly...

‣ Network-based prediction for sources of transcriptional dysregulation using latent pathway identification analysis

Pham, Lisa; Christadore, Lisa; Schaus, Scott; Kolaczyk, Eric D.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Understanding the systemic biological pathways and the key cellular mechanisms that dictate disease states, drug response, and altered cellular function poses a significant challenge. Although high-throughput measurement techniques, such as transcriptional profiling, give some insight into the altered state of a cell, they fall far short of providing by themselves a complete picture. Some improvement can be made by using enrichment-based methods to, for example, organize biological data of this sort into collections of dysregulated pathways. However, such methods arguably are still limited to primarily a transcriptional view of the cell. Augmenting these methods still further with networks and additional -omics data has been found to yield pathways that play more fundamental roles. We propose a previously undescribed method for identification of such pathways that takes a more direct approach to the problem than any published to date. Our method, called latent pathway identification analysis (LPIA), looks for statistically significant evidence of dysregulation in a network of pathways constructed in a manner that implicitly links pathways through their common function in the cell. We describe the LPIA methodology and illustrate its effectiveness through analysis of data on (i) metastatic cancer progression...

‣ Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China

Tian, Huidong; Stige, Leif C.; Cazelles, Bernard; Kausrud, Kyrre Linne; Svarverud, Rune; Stenseth, Nils C.; Zhang, Zhibin
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
It is becoming increasingly clear that global warming is taking place; however, its long-term effects on biological populations are largely unknown due to lack of long-term data. Here, we reconstructed a 1,910-y-long time series of outbreaks of Oriental migratory locusts (Locusta migratoria manilensis) in China, on the basis of information extracted from >8,000 historical documents. First by analyzing the most recent period with the best data quality using generalized additive models, we found statistically significant associations between the reconstructed locust abundance and indexes of precipitation and temperature at both annual (A.D. 1512–1911) and decadal (A.D. 1000–1900) scales: There were more locusts under dry and cold conditions and when locust abundance was high in the preceding year or decade. Second, by exploring locust–environment correlations using a 200-y moving window, we tested whether these associations also hold further back in time. The locust–precipitation correlation was found to hold at least as far back as to A.D. 500, supporting the robustness of this link as well as the quality of both reconstructions. The locust–temperature correlation was weaker and less consistent, which may reflect this link being indirect and thus more easily moderated by other factors. We anticipate that further analysis of this unique time series now available to the scientific community will continue to provide insights into biological consequences of climate change in the years to come.

‣ Optimal defocus estimation in individual natural images

Burge, Johannes; Geisler, Wilson S.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Defocus blur is nearly always present in natural images: Objects at only one distance can be perfectly focused. Images of objects at other distances are blurred by an amount depending on pupil diameter and lens properties. Despite the fact that defocus is of great behavioral, perceptual, and biological importance, it is unknown how biological systems estimate defocus. Given a set of natural scenes and the properties of the vision system, we show from first principles how to optimally estimate defocus at each location in any individual image. We show for the human visual system that high-precision, unbiased estimates are obtainable under natural viewing conditions for patches with detectable contrast. The high quality of the estimates is surprising given the heterogeneity of natural images. Additionally, we quantify the degree to which the sign ambiguity often attributed to defocus is resolved by monochromatic aberrations (other than defocus) and chromatic aberrations; chromatic aberrations fully resolve the sign ambiguity. Finally, we show that simple spatial and spatio-chromatic receptive fields extract the information optimally. The approach can be tailored to any environment–vision system pairing: natural or man-made, animal or machine. Thus...

‣ Extensive divergence of yeast stress responses through transitions between induced and constitutive activation

Tirosh, Itay; Wong, Koon Ho; Barkai, Naama; Struhl, Kevin
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Closely related species show a high degree of differences in gene expression, but the functional significance of these differences remains unclear. Similarly, stress responses in yeast typically involve differential expression of numerous genes, and it is unclear how many of these are functionally significant. To address these issues, we compared the expression programs of four yeast species under different growth conditions, and found that the response of these species to stress has diverged extensively. On an individual gene basis, most transcriptional responses are not conserved in any pair of species, and there are very limited common responses among all four species. We present evidence that many evolutionary changes in stress responses are compensated either (i) by the response of related genes or (ii) by changes in the basal expression levels of the genes whose responses have diverged. Thus, stress-related genes are often induced upon stress in some species but maintain high levels even in the absence of stress at other species, indicating a transition between induced and constitutive activation. In addition, ∼15% of the stress responses are specific to only one of the four species, with no evidence for compensating effects or stress-related annotations...

‣ Solar hydrogen-producing bionanodevice outperforms natural photosynthesis

Lubner, Carolyn E.; Applegate, Amanda M.; Knörzer, Philipp; Ganago, Alexander; Bryant, Donald A.; Happe, Thomas; Golbeck, John H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Although a number of solar biohydrogen systems employing photosystem I (PSI) have been developed, few attain the electron transfer throughput of oxygenic photosynthesis. We have optimized a biological/organic nanoconstruct that directly tethers FB, the terminal [4Fe-4S] cluster of PSI from Synechococcus sp. PCC 7002, to the distal [4Fe-4S] cluster of the [FeFe]-hydrogenase (H2ase) from Clostridium acetobutylicum. On illumination, the PSI–[FeFe]-H2ase nanoconstruct evolves H2 at a rate of 2,200 ± 460 μmol mg chlorophyll-1 h-1, which is equivalent to 105 ± 22 e-PSI-1 s-1. Cyanobacteria evolve O2 at a rate of approximately 400 μmol mg chlorophyll-1 h-1, which is equivalent to 47 e-PSI-1 s-1, given a PSI to photosystem II ratio of 1.8. The greater than twofold electron throughput by this hybrid biological/organic nanoconstruct over in vivo oxygenic photosynthesis validates the concept of tethering proteins through their redox cofactors to overcome diffusion-based rate limitations on electron transfer.

‣ Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders

Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism...

‣ Classification of protein functional surfaces using structural characteristics

Tseng, Yan Yuan; Li, Wen-Hsiung
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Protein structure and function are closely related, especially in functional surfaces, which are local spatial regions that perform the biological functions. Also, protein structures tend to evolve more slowly than amino acid sequences. We have therefore developed a method to classify proteins using the structures of functional surfaces; we call it protein surface classification (PSC). PSC may reflect functional relationships among proteins and may detect evolutionary relationships among highly divergent sequences. We focused on the surfaces of ligand-bound regions because they represent well-defined structures. Specifically, we used structural attributes to measure similarities between binding surfaces and constructed a PSC library of ∼2,000 binding surface types from the bound forms. Using flavin mononucleotide-binding proteins and glycosidases as examples, we show how the evolutionary position of an uncharacterized protein can be defined and its function inferred from the characterized members of the same surface subtype. We found that proteins with the same enzyme nomenclature may be divided into subtypes and that two proteins in the same CATH (Class, Architecture, Topology, Homologous superfamily) fold may belong to two different surface types. In conclusion...

‣ Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m−2·d−1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms...

‣ Highly neurotoxic monomeric α-helical prion protein

Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Lasmézas, Corinne Ida
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Prion diseases are infectious and belong to the group of protein misfolding neurodegenerative diseases. In these diseases, neuronal dysfunction and death are caused by the neuronal toxicity of a particular misfolded form of their cognate protein. The ability to specifically target the toxic protein conformer or the neuronal death pathway would provide powerful therapeutic approaches to these diseases. The neurotoxic forms of the prion protein (PrP) have yet to be defined but there is evidence suggesting that at least some of them differ from infectious PrP (PrPSc). Herein, without making an assumption about size or conformation, we searched for toxic forms of recombinant PrP after dilution refolding, size fractionation, and systematic biological testing of all fractions. We found that the PrP species most neurotoxic in vitro and in vivo (toxic PrP, TPrP) is a monomeric, highly α-helical form of PrP. TPrP caused autophagy, apoptosis, and a molecular signature remarkably similar to that observed in the brains of prion-infected animals. Interestingly, highly α-helical intermediates have been described for other amyloidogenic proteins but their biological significance remains to be established. We provide unique experimental evidence that a monomeric α-helical form of an amyloidogenic protein represents a cytotoxic species. Although toxic PrP has yet to be purified from prion-infected brains...

‣ Integrated cross-species transcriptional network analysis of metastatic susceptibility

Hu, Ying; Wu, Gang; Rusch, Michael; Lukes, Luanne; Buetow, Kenneth H.; Zhang, Jinghui; Hunter, Kent W.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Metastatic disease is the proximal cause of mortality for most cancers and remains a significant problem for the clinical management of neoplastic disease. Recent advances in global transcriptional analysis have enabled better prediction of individuals likely to progress to metastatic disease. However, minimal overlap between predictive signatures has precluded easy identification of key biological processes contributing to the prometastatic transcriptional state. To overcome this limitation, we have applied network analysis to two independent human breast cancer datasets and three different mouse populations developed for quantitative analysis of metastasis. Analysis of these datasets revealed that the gene membership of the networks is highly conserved within and between species, and that these networks predicted distant metastasis free survival. Furthermore these results suggest that susceptibility to metastatic disease is cell-autonomous in estrogen receptor-positive tumors and associated with the mitotic spindle checkpoint. In contrast, nontumor genetics and pathway activities-associated stromal biology are significant modifiers of the rate of metastatic spread of estrogen receptor-negative tumors. These results suggest that the application of network analysis across species may provide a robust method to identify key biological programs associated with human cancer progression.

‣ A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice

Ding, Jihua; Lu, Qing; Ouyang, Yidan; Mao, Hailiang; Zhang, Pingbo; Yao, Jialing; Xu, Caiguo; Li, Xianghua; Xiao, Jinghua; Zhang, Qifa
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Hybrid rice has greatly contributed to the global increase of rice productivity. A major component that facilitated the development of hybrids was a mutant showing photoperiod-sensitive male sterility (PSMS) with its fertility regulated by day length. Transcriptome studies have shown that large portions of the eukaryotic genomic sequences are transcribed to long noncoding RNAs (lncRNAs). However, the potential roles for only a few lncRNAs have been brought to light at present. Thus, great efforts have to be invested to understand the biological functions of lncRNAs. Here we show that a lncRNA of 1,236 bases in length, referred to as long-day–specific male-fertility–associated RNA (LDMAR), regulates PSMS in rice. We found that sufficient amount of the LDMAR transcript is required for normal pollen development of plants grown under long-day conditions. A spontaneous mutation causing a single nucleotide polymorphism (SNP) between the wild-type and mutant altered the secondary structure of LDMAR. This change brought about increased methylation in the putative promoter region of LDMAR, which reduced the transcription of LDMAR specifically under long-day conditions, resulting in premature programmed cell death (PCD) in developing anthers...

‣ The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation

Gao, Mu; Skolnick, Jeffrey
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
451.23344%
Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å distance from protein interfaces. Accordingly, in about half of ligand-bound protein-protein complexes, amino acids from both sides of a protein interface are involved in direct contacts with at least one ligand. Statistically, ligands are closer to a protein-protein interface than a random surface patch of the same solvent accessible surface area. Similar results are obtained in an analysis of the ligand distribution around domain-domain interfaces of 1,416 nonredundant, two-domain protein structures. Furthermore, comparable sized pockets as observed in experimental structures are present in artificially generated protein complexes, suggesting that the prominent appearance of pockets around protein interfaces is mainly a structural consequence of protein packing and thus...