Página 1 dos resultados de 26 itens digitais encontrados em 0.022 segundos

‣ Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and α-actinin are components of the nephrin multiprotein complex

Lehtonen, Sanna; Ryan, Jennifer J.; Kudlicka, Krystyna; Iino, Noriaki; Zhou, Huilin; Farquhar, Marilyn G.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
284.35518%
Nephrin is a cell surface receptor of the Ig superfamily that localizes to slit diaphragms, the specialized junctions between the interdigitating foot processes of the glomerular epithelium (podocytes) in the kidney. Mutations in the NPHS1 gene encoding nephrin lead to proteinuria and congenital nephrotic syndrome, indicating that nephrin is essential for normal glomerular development and function. To identify nephrin-binding proteins, we performed mass spectrometry on proteins obtained from pull-down assays with GST-nephrin cytoplasmic domain. Nephrin specifically pulled down six proteins from glomerular lysates, MAGI-2/S-SCAM (membrane-associated guanylate kinase inverted 2/synaptic scaffolding molecule), IQGAP1 (IQ motif-containingGTPase-activatingprotein1),CASK(calcium/calmodulin-dependent serine protein kinase), α-actinin, αII spectrin, and βII spectrin. All of these scaffolding proteins are often associated with cell junctions. By immunofluorescence these proteins are expressed in glomerular epithelial cells, where they colocalize with nephrin in the foot processes. During glomerular development, IQGAP1 is expressed in the junctional complexes between the earliest identifiable podocytes, MAGI-2/S-SCAM is first detected in junctional complexes in podocytes after their migration to the base of the cells. Thus...

‣ Nephrin Forms a Complex with Adherens Junction Proteins and CASK in Podocytes and in Madin-Darby Canine Kidney Cells Expressing Nephrin

Lehtonen, Sanna; Lehtonen, Eero; Kudlicka, Krystyna; Holthöfer, Harry; Farquhar, Marilyn G.
Fonte: American Society for Investigative Pathology Publicador: American Society for Investigative Pathology
Tipo: Artigo de Revista Científica
Publicado em /09/2004 Português
Relevância na Pesquisa
304.70395%
Mutations in the NPHS1 gene encoding nephrin lead to congenital nephrotic syndrome of the Finnish type. Nephrin is a key component of the glomerular slit diaphragms between epithelial foot processes, but its role in the pathogenesis of this disease is poorly understood. To further clarify the molecular mechanisms involved we investigated the interactions between nephrin and other components of the foot processes and filtration slits, especially adherens junction proteins, and searched for novel nephrin interacting proteins. Using co-immunoprecipitation and pull-down assays we show here that nephrin forms a multiprotein complex with cadherins and p120 catenin and with three scaffolding proteins, ZO-1, CD2AP, and CASK, in kidney glomeruli and when expressed in Madin-Darby canine kidney cells. CASK was identified as a novel binding partner of nephrin by mass spectrometry and was localized to podocytes in the glomerulus. CASK is a scaffolding protein that participates in maintenance of polarized epithelial cell architecture by linking membrane proteins and signaling molecules to the actin cytoskeleton. Our results support a model whereby the glomerular slit diaphragms are composed of cell adhesion molecules of the immunoglobulin and cadherin superfamilies that are connected to each other and to the actin cytoskeleton and signaling networks via the cytoplasmic scaffolding proteins CASK...

‣ Deletion of CASK in mice is lethal and impairs synaptic function

Atasoy, Deniz; Schoch, Susanne; Ho, Angela; Nadasy, Krisztina A.; Liu, Xinran; Zhang, Weiqi; Mukherjee, Konark; Nosyreva, Elena D.; Fernandez-Chacon, Rafael; Missler, Markus; Kavalali, Ege T.; Südhof, Thomas C.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
319.01514%
CASK is an evolutionarily conserved multidomain protein composed of an N-terminal Ca2+/calmodulin-kinase domain, central PDZ and SH3 domains, and a C-terminal guanylate kinase domain. Many potential activities for CASK have been suggested, including functions in scaffolding the synapse, in organizing ion channels, and in regulating neuronal gene transcription. To better define the physiological importance of CASK, we have now analyzed CASK “knockdown” mice in which CASK expression was suppressed by ≈70%, and CASK knockout (KO) mice, in which CASK expression was abolished. CASK knockdown mice are viable but smaller than WT mice, whereas CASK KO mice die at first day after birth. CASK KO mice exhibit no major developmental abnormalities apart from a partially penetrant cleft palate syndrome. In CASK-deficient neurons, the levels of the CASK-interacting proteins Mints, Veli/Mals, and neurexins are decreased, whereas the level of neuroligin 1 (which binds to neurexins that in turn bind to CASK) is increased. Neurons lacking CASK display overall normal electrical properties and form ultrastructurally normal synapses. However, glutamatergic spontaneous synaptic release events are increased, and GABAergic synaptic release events are decreased in CASK-deficient neurons. In contrast to spontaneous neurotransmitter release...

‣ Direct Interaction of CASK/LIN-2 and Syndecan Heparan Sulfate Proteoglycan and Their Overlapping Distribution in Neuronal Synapses

Hsueh, Yi-Ping; Yang, Fu-Chia; Kharazia, Viktor; Naisbitt, Scott; Cohen, Alexandra R.; Weinberg, Richard J.; Sheng, Morgan
Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 13/07/1998 Português
Relevância na Pesquisa
311.78176%
CASK, the rat homolog of a gene (LIN-2) required for vulval differentiation in Caenorhabditis elegans, is expressed in mammalian brain, but its function in neurons is unknown. CASK is distributed in a punctate somatodendritic pattern in neurons. By immunogold EM, CASK protein is concentrated in synapses, but is also present at nonsynaptic membranes and in intracellular compartments. This immunolocalization is consistent with biochemical studies showing the presence of CASK in soluble and synaptosomal membrane fractions and its enrichment in postsynaptic density fractions of rat brain. By yeast two-hybrid screening, a specific interaction was identified between the PDZ domain of CASK and the COOH terminal tail of syndecan-2, a cell surface heparan sulfate proteoglycan (HSPG). The interaction was confirmed by coimmunoprecipitation from heterologous cells. In brain, syndecan-2 localizes specifically at synaptic junctions where it shows overlapping distribution with CASK, consistent with an interaction between these proteins in synapses. Cell surface HSPGs can bind to extracellular matrix proteins, and are required for the action of various heparin-binding polypeptide growth/differentiation factors. The synaptic localization of CASK and syndecan suggests a potential role for these proteins in adhesion and signaling at neuronal synapses.

‣ Human CASK/LIN-2 Binds Syndecan-2 and Protein 4.1 and Localizes to the Basolateral Membrane of Epithelial Cells

Cohen, Alexandra R.; Wood, Daniel F.; Marfatia, Shirin M.; Walther, Zenta; Chishti, Athar H.; Anderson, James Melvin
Fonte: The Rockefeller University Press Publicador: The Rockefeller University Press
Tipo: Artigo de Revista Científica
Publicado em 13/07/1998 Português
Relevância na Pesquisa
294.36805%
In Caenorhabditis elegans, mutations in the lin-2 gene inactivate the LET-23 receptor tyrosine kinase/Ras/MAP kinase pathway required for vulval cell differentiation. One function of LIN-2 is to localize LET-23 to the basal membrane domain of vulval precursor cells. LIN-2 belongs to the membrane-associated guanylate kinase family of proteins. We have cloned and characterized the human homolog of LIN-2, termed hCASK, and Northern and Western blot analyses reveal that it is ubiquitously expressed. Indirect immunofluorescence localizes CASK to distinct lateral and/or basal plasma membrane domains in different epithelial cell types. We detect in a yeast two-hybrid screen that the PDZ domain of hCASK binds to the heparan sulfate proteoglycan syndecan-2. This interaction is confirmed using in vitro binding assays and immunofluorescent colocalization. Furthermore, we demonstrate that hCASK binds the actin-binding protein 4.1. Syndecans are known to bind extracellular matrix, and to form coreceptor complexes with receptor tyrosine kinases. We speculate that CASK mediates a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with protein 4.1. Like other membrane-associated guanylate kinases...

‣ CASK Deletion in Intestinal Epithelia Causes Mislocalization of LIN7C and the DLG1/Scrib Polarity Complex without Affecting Cell Polarity

Lozovatsky, Larissa; Abayasekara, Nirmalee; Piawah, Sorbarikor; Walther, Zenta
Fonte: The American Society for Cell Biology Publicador: The American Society for Cell Biology
Tipo: Artigo de Revista Científica
Publicado em 01/11/2009 Português
Relevância na Pesquisa
316.21434%
CASK is the mammalian ortholog of LIN2, a component of the LIN2/7/10 protein complex that targets epidermal growth factor receptor (EGFR) to basolateral membranes in Caenorhabditis elegans. A member of the MAGUK family of scaffolding proteins, CASK resides at basolateral membranes in polarized epithelia. Its interaction with LIN7 is evolutionarily conserved. In addition, CASK forms a complex with another MAGUK, the DLG1 tumor suppressor. Although complete knockout of CASK is lethal, the gene is X-linked, enabling us to generate heterozygous female adults that are mosaic for its expression. We also generated intestine-specific CASK knockout mice. Immunofluorescence analysis revealed that in intestine, CASK is not required for epithelial polarity or differentiation but is necessary for the basolateral localization of DLG1 and LIN7C. However, the subcellular distributions of DLG1 and LIN7C are independent of CASK in the stomach. Moreover, CASK and LIN7C show normal localization in dlg1−/− intestine. Despite the disappearance of basolateral LIN7C in CASK-deficient intestinal crypts, this epithelium retains normal localization of LIN7A/B, EGFR and ErbB-2. Finally, crypt-to-villus migration rates are unchanged in CASK-deficient intestinal epithelium. Thus...

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, Anna; Tarpey, Patrick S; Licata, Andrea; Cox, James; Whibley, Annabel; Boyle, Jackie; Rogers, Carolyn; Grigg, John; Partington, Michael; Stevenson, Roger E; Tolmie, John; Yates, John RW; Turner, Gillian; Wilson, Meredith; Futreal, Andrew P; Corbe
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
415.87%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...

‣ Central Regulation of Locomotor Behavior of Drosophila melanogaster Depends on a CASK Isoform Containing CaMK-Like and L27 Domains

Slawson, Justin B.; Kuklin, Elena A.; Ejima, Aki; Mukherjee, Konark; Ostrovsky, Lilly; Griffith, Leslie C.
Fonte: Genetics Society of America Publicador: Genetics Society of America
Tipo: Artigo de Revista Científica
Publicado em /01/2011 Português
Relevância na Pesquisa
419.7432%
Genetic causes for disturbances of locomotor behavior can be due to muscle, peripheral neuron, or central nervous system pathologies. The Drosophila melanogaster homolog of human CASK (also known as caki or camguk) is a molecular scaffold that has been postulated to have roles in both locomotion and plasticity. These conclusions are based on studies using overlapping deficiencies that largely eliminate the entire CASK locus, but contain additional chromosomal aberrations as well. More importantly, analysis of the sequenced Drosophila genome suggests the existence of multiple protein variants from the CASK locus, further complicating the interpretation of experiments using deficiency strains. In this study, we generated small deletions within the CASK gene that eliminate gene products containing the CaMK-like and L27 domains (CASK-β), but do not affect transcripts encoding the smaller forms (CASK-α), which are structurally homologous to vertebrate MPP1. These mutants have normal olfactory habituation, but exhibit a striking array of locomotor problems that includes both initiation and motor maintenance defects. Previous studies had suggested that presynaptic release defects at the neuromuscular junction in the multigene deficiency strain were the likely basis of its locomotor phenotype. The locomotor phenotype of the CASK-β mutant...

‣ Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior

Sharp, B.M.; Chen, H.; Gong, S.; Wu, X.; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
277.12719%
Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavior. The transcriptomes of NAcc shell-VP GABAergic neurons from these two strains were analyzed in adolescents, using a multidisciplinary approach that combined stereotaxic ionotophoretic brain microinjections, laser-capture microdissection (LCM) and microarray measurement of transcripts. LCM enriched the gene transcripts detected in GABA neurons compared to the residual NAcc tissue: a ratio of neuron/residual > 1 and false discovery rate (FDR) <5% yielded 6,623 transcripts, whereas a ratio of >3 yielded 3,514. Strain-dependent differences in gene expression within GABA neurons were identified; 322 vs. 60 transcripts showed 1.5-fold vs. 2-fold differences in expression (FDR<5%). Classification by gene ontology showed these 322 transcripts were widely distributed...

‣ CASK interacts with PMCA4b and JAM-A on the Mouse Sperm Flagellum to Regulate Ca2+ Homeostasis and Motility1

Aravindan, Rolands G.; Fomin, Victor P.; Naik, Ulhas P.; Modelski, Mark J.; Naik, Meghna U.; Galileo, Deni S.; Duncan, Randall L.; Martin-DeLeon, Patricia A.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /08/2012 Português
Relevância na Pesquisa
314.39383%
Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P<0.001) ATP levels, significantly (P<0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10-fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used coimmunoprecipitation studies to show that CASK (Ca2+/calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b’s enzymatic activity...

‣ Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.
Fonte: Hindawi Publishing Corporation Publicador: Hindawi Publishing Corporation
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
505.8792%
Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.

‣ A novel interaction between FRMD7 and CASK: evidence for a causal role in idiopathic infantile nystagmus

Watkins, Rachel J.; Patil, Rajashree; Goult, Benjamin T.; Thomas, Mervyn G.; Gottlob, Irene; Shackleton, Sue
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
309.99793%
Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder of eye movement that can be caused by mutations in the FRMD7 gene that encodes a FERM domain protein. FRMD7 is expressed in the brain and knock-down studies suggest it plays a role in neurite extension through modulation of the actin cytoskeleton, yet little is known about its precise molecular function and the effects of IIN mutations. Here, we studied four IIN-associated missense mutants and found them to have diverse effects on FRMD7 expression and cytoplasmic localization. The C271Y mutant accumulates in the nucleus, possibly due to disruption of a nuclear export sequence located downstream of the FERM-adjacent domain. While overexpression of wild-type FRMD7 promotes neurite outgrowth, mutants reduce this effect to differing degrees and the nuclear localizing C271Y mutant acts in a dominant-negative manner to inhibit neurite formation. To gain insight into FRMD7 molecular function, we used an IP-MS approach and identified the multi-domain plasma membrane scaffolding protein, CASK, as a FRMD7 interactor. Importantly, CASK promotes FRMD7 co-localization at the plasma membrane, where it enhances CASK-induced neurite length, whereas IIN-associated FRMD7 mutations impair all of these features. Mutations in CASK cause X-linked mental retardation. Patients with C-terminal CASK mutations also present with nystagmus and...

‣ MICrocephaly, disproportionate pontine and cerebellar hypoplasia syndrome: A clinico-radiologic phenotype linked to calcium/calmodulin-dependent serine protein kinase gene mutation

Saleem, Rashid; Setty, Gururaj; Hussain, Nahin
Fonte: Medknow Publications & Media Pvt Ltd Publicador: Medknow Publications & Media Pvt Ltd
Tipo: Artigo de Revista Científica
Publicado em //2013 Português
Relevância na Pesquisa
392.5066%
MICrocephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH) syndrome, a rare X-linked disorder, generally seen in girls, is characterized by neurodevelopmental delay, microcephaly, and disproportionate pontine and cerebellar hypoplasia. It is caused by inactivating calcium/calmodulin-dependent serine protein kinase (CASK) gene mutations. We report a 2-year-old girl with severe neurodevelopmental delay, microcephaly, minimal pontine hypoplasia, cerebellar hypoplasia, and normal looking corpus callosum, with whom the conventional cytogenetic studies turned out to be normal, and an array-comparative genomic hybridization (a-CGH) analysis showed CASK gene duplication at Xp11.4. Our case highlights the importance of using clinico-radiologic phenotype to guide genetic investigation and it also confirms the role of a-CGH analysis in establishing the genetic diagnosis of MICPCH syndrome, when conventional cytogenetic studies are inconclusive.

‣ Neuroradiological Features of CASK Mutations

Takanashi, J.; Arai, H.; Nabatame, S.; Hirai, S.; Hayashi, S.; Inazawa, J.; Okamoto, N.; Barkovich, A. J.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
404.70395%
Mutations of CASK gene are associated with X-linked mental retardation with microcephaly and disproportionate brainstem and cerebellar hypoplasia in females. The areas of the cerebrum, corpus callosum, pons, midbrain, and cerebellar vermis and hemisphere, and a ratio of cerebrum/corpus callosum areas were measured in five female patients with CASK mutations, 67 female controls, and five patients with pontine hypoplasia. MR imaging in patients with CASK mutations revealed normal size of the corpus callosum and low ratio of cerebrum/corpus callosum with reduced area of the cerebrum, pons, midbrain, and cerebellar vermis and hemispheres. The five patients with pontine hypoplasia showed thinning of the corpus callosum and a high ratio of cerebrum/corpus callosum, irrespective of the size of the cerebrum. The normal size of the corpus callosum, which gives an impression of callosal thickening at first glance, may be an imaging clue to detect patients with CASK mutations.

‣ Identification of Three Novel Mutations in the FRMD7 Gene for X-linked Idiopathic Congenital Nystagmus

Zhang, Xiao; Ge, Xianglian; Yu, Ying; Zhang, Yilan; Wu, Yaming; Luan, Yin; Sun, Ji; Qu, Jia; Jin, Zi-Bing; Gu, Feng
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em 17/01/2014 Português
Relevância na Pesquisa
270.58906%
Idiopathic congenital nystagmus (ICN) consists of involuntary and periodic ocular motility, often with seriously reduced visual acuity. To identify the genetic defects associated with X-linked ICN, we performed PCR-based DNA direct sequencing of two candidate genes, FRMD7 and GPR143, in four families. Mutation analysis led to identification of three novel mutations, p.S260R, p.Q487X, and p.V549Y fsX554, in FRMD7 in three of the recruited families. Results from structural modeling indicated that the p.S260R may potentially disrupt FRMD7 function through loss of a phosphorylation site and/or interference with protein-protein interactions. Both p.Q487X, and p.V549Y fsX554 mutations were predicted to generate nonfunctional truncated proteins. Using a capture next generation sequencing method, we excluded CASK as the responsible gene for the remaining family. Combining sequence analysis and structural modeling, we report three novel mutations in FRMD7 in three independent families with XLICN, and provide molecular insights for future XLICN diagnosis and treatment.

‣ Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK

Landgraf, Peter; Mikhaylova, Marina; Macharadze, Tamar; Borutzki, Corinna; Zenclussen, Ana-Claudia; Wahle, Petra; Kreutz, Michael R.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 03/02/2014 Português
Relevância na Pesquisa
315.3473%
The survival promoting peptide Y-P30 has documented neuroprotective effects as well as cell survival and neurite outgrowth promoting activity in vitro and in vivo. Previous work has shown that multimerization of the peptide with pleiotrophin (PTN) and subsequent binding to syndecan (SDC) -2 and -3 is involved in its neuritogenic effects. In this study we show that Y-P30 application regulates the nuclear localization of the SDC binding partner Calcium/calmodulin-dependent serine kinase (CASK) in neuronal primary cultures during development. In early development at day in vitro (DIV) 8 when mainly SDC-3 is expressed supplementation of the culture medium with Y-P30 reduces nuclear CASK levels whereas it has the opposite effect at DIV 18 when SDC-2 is the dominant isoform. In the nucleus CASK regulates gene expression via its association with the T-box transcription factor T-brain-1 (Tbr-1) and we indeed found that gene expression of downstream targets of this complex, like the GluN2B NMDA-receptor, exhibits a corresponding down- or up-regulation at the mRNA level. The differential effect of Y-P30 on the nuclear localization of CASK correlates with its ability to induce shedding of the ectodomain of SDC-2 but not -3. shRNA knockdown of SDC-2 at DIV 18 and SDC-3 at DIV 8 completely abolished the effect of Y-P30 supplementation on nuclear CASK levels. During early development a protein knockdown of SDC-3 also attenuated the effect of Y-P30 on axon outgrowth. Taken together these data suggest that Y-P30 can control the nuclear localization of CASK in a SDC-dependent manner.

‣ Identification and Glycerol-Induced Correction of Misfolding Mutations in the X-Linked Mental Retardation Gene CASK

LaConte, Leslie E. W.; Chavan, Vrushali; Mukherjee, Konark
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 05/02/2014 Português
Relevância na Pesquisa
315.3473%
The overwhelming amount of available genomic sequence variation information demands a streamlined approach to examine known pathogenic mutations of any given protein. Here we seek to outline a strategy to easily classify pathogenic missense mutations that cause protein misfolding and are thus good candidates for chaperone-based therapeutic strategies, using previously identified mutations in the gene CASK. We applied a battery of bioinformatics algorithms designed to predict potential impact on protein structure to five pathogenic missense mutations in the protein CASK that have been shown to underlie pathologies ranging from X-linked mental retardation to autism spectrum disorder. A successful classification of the mutations as damaging was not consistently achieved despite the known pathogenicity. In addition to the bioinformatics analyses, we performed molecular modeling and phylogenetic comparisons. Finally, we developed a simple high-throughput imaging assay to measure the misfolding propensity of the CASK mutants in situ. Our data suggests that a phylogenetic analysis may be a robust method for predicting structurally damaging mutations in CASK. Mutations in two evolutionarily invariant residues (Y728C and W919R) exhibited a strong propensity to misfold and form visible aggregates in the cytosolic milieu. The remaining mutations (R28L...

‣ Regulation of dopamine release by CASK-β modulates locomotor initiation in Drosophila melanogaster

Slawson, Justin B.; Kuklin, Elena A.; Mukherjee, Konark; Pírez, Nicolás; Donelson, Nathan C.; Griffith, Leslie C.
Fonte: Frontiers Media S.A. Publicador: Frontiers Media S.A.
Tipo: Artigo de Revista Científica
Publicado em 18/11/2014 Português
Relevância na Pesquisa
413.21582%
CASK is an evolutionarily conserved scaffolding protein that has roles in many cell types. In Drosophila, loss of the entire CASK gene or just the CASK-β transcript causes a complex set of adult locomotor defects. In this study, we show that the motor initiation component of this phenotype is due to loss of CASK-β in dopaminergic neurons and can be specifically rescued by expression of CASK-β within this subset of neurons. Functional imaging demonstrates that mutation of CASK-β disrupts coupling of neuronal activity to vesicle fusion. Consistent with this, locomotor initiation can be rescued by artificially driving activity in dopaminergic neurons. The molecular mechanism underlying this role of CASK-β in dopaminergic neurons involves interaction with Hsc70-4, a molecular chaperone previously shown to regulate calcium-dependent vesicle fusion. These data suggest that there is a novel CASK-β-dependent regulatory complex in dopaminergic neurons that serves to link activity and neurotransmitter release.

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, A.; Tarpey, P.; Licata, A.; Cox, J.; Whibley, A.; Boyle, J.; Rogers, C.; Grigg, J.; Partington, M.; Stevenson, R.; Tolmie, J.; Yates, J.; Turner, G.; Wilson, M.; Futreal, P.; Corbett, M.; Shaw, M.; Gecz, J.; Raymond, F.; Stratton, M.
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em //2010 Português
Relevância na Pesquisa
619.87367%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...

‣ A Missense Mutation in CASK Causes FG Syndrome in an Italian Family

Piluso, Giulio; D'Amico, Francesca; Saccone, Valentina; Bismuto, Ettore; Rotundo, Ida Luisa; Di Domenico, Marina; Aurino, Stefania; Schwartz, Charles E.; Neri, Giovanni; Nigro, Vincenzo
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 13/02/2009 Português
Relevância na Pesquisa
313.06793%
First described in 1974, FG syndrome (FGS) is an X-linked multiple congenital anomaly/mental retardation (MCA/MR) disorder, characterized by high clinical variability and genetic heterogeneity. Five loci (FGS1-5) have so far been linked to this phenotype on the X chromosome, but only one gene, MED12, has been identified to date. Mutations in this gene account for a restricted number of FGS patients with a more distinctive phenotype, referred to as the Opitz-Kaveggia phenotype. We report here that a p.R28L (c.83G→T) missense mutation in CASK causes FGS phenotype in an Italian family previously mapped to Xp11.4-p11.3 (FGS4). The identified missense mutation cosegregates with the phenotype in this family and is absent in 1000 control X chromosomes of the same ethnic origin. An extensive analysis of CASK protein functions as well as structural and dynamic studies performed by molecular dynamics (MD) simulation did not reveal significant alterations induced by the p.R28L substitution. However, we observed a partial skipping of the exon 2 of CASK, presumably a consequence of improper recognition of exonic splicing enhancers (ESEs) induced by the c.83G→T transversion. CASK is a multidomain scaffold protein highly expressed in the central nervous system (CNS) with specific localization to the synapses...