Página 1 dos resultados de 35 itens digitais encontrados em 0.028 segundos

‣ Resolução numérica de EDPs utilizando ondaletas harmônicas; Numerical resolution of partial differential equations using harmonic wavelets

Peixoto, Pedro da Silva
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 16/07/2009 Português
Relevância na Pesquisa
69.98376%
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas...

‣ A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations

Thalhammer, Mechthild; Abhau, Jochen
Fonte: Academic Press Publicador: Academic Press
Tipo: Artigo de Revista Científica
Publicado em 15/08/2012 Português
Relevância na Pesquisa
49.170645%
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However...

‣ Simulação de escoamentos não-periódicos utilizando as metodologias pseudo-espectral e da fronteira imersa acopladas; Simulation of non-periodics flows using the fourier pseudo-spectral and immersed boundary methods

Mariano, Felipe Pamplona
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Dissertação
Português
Relevância na Pesquisa
120.51594%
Para compreender fenômenos relacionados à combustão, aeroacústica, transição a turbulência entre outros, a Dinâmica de Fluídos Computacional (CFD) utiliza os métodos de alta ordem. Um dos mais conhecidos é o método pseudo-espectral de Fourier, o qual alia: alta ordem de precisão na resolução das equações, com um baixo custo computacional. Este está ligado à utilização da FFT e do método da projeção do termo da pressão, o qual desvincula os cálculos da pressão da resolução das equações de Navier-Stokes. O procedimento de calcular o campo de pressão, normalmente é o mais oneroso nas metodologias convencionais. Apesar destas vantagens, o método pseudo-espectral de Fourier só pode ser utilizado para resolver problemas com condições de contorno periódicas, limitando o seu uso no campo da dinâmica de fluídos. Visando resolver essa restrição uma nova metodologia é proposta no presente trabalho, que tem como objetivo simular escoamentos não-periódicos utilizando o método pseudo-espectral de Fourier. Para isso, é utilizada a metodologia da Fronteira Imersa, a qual representa as condições de contorno de um escoamento através de um campo de força imposto nas equações de Navier-Stokes. Como teste...

‣ Solução numérica das equações de Navier-Stokes usando uma hibridação das metodologias Fronteira Imersa e Pseudo-Espectral de Fourier; Numerical solution of Navier-Stokes equations using a hybrid methodology of immersed boundary and Fourier pseudo-spectral

Mariano, Felipe Pamplona
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Tese de Doutorado
Português
Relevância na Pesquisa
109.8428%
No presente trabalho é desenvolvida uma nova metodologia para a solução das equações de Navier-Stokes na formulação incompressível aplicada a escoamentos sobre geometrias complexas. Ela é baseada no acoplamento da metodologia pseudo-espectral de Fourier (MPEF) juntamente com a metodologia da fronteira imersa (MFI). As principais particularidades do MPEF é a alta acurácia numérica, aliada com o baixo custo computacional, pois não é necessário resolver o sistema linear do acoplamento pressão-velocidade. Entretanto, ela é limitada a problemas com condições de contorno periódicas. Com o intuito de expandir a aplicabilidade da MPEF a outros problemas da Dinâmica dos Fluidos Computacional (CFD), ela foi acoplada à MFI. A MFI é uma metodologia desenvolvida para simular escoamentos sobre geometrias complexa e móveis usando malha cartesiana. Normalmente, apresenta baixa acurácia nos resultados próximos à região da interface imersa. Com a hibridação proposta no presente trabalho, obtém-se um aumento da precisão dos resultados sobre a fronteira. No presente trabalho mostra-se os resultados de verificação e validação da metodologia híbrida. Para a verificação utilizou-se a técnica das soluções manufaturas...

‣ Simulação de grandes escalas de jatos periódicos temporais utilizando a metodologia psedo-espectral de Fourier; Large eddy simulation of periodic temporal jets using the Fourier pseudo-spectral method

Moreira, Leonardo de Queiroz
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Dissertação
Português
Relevância na Pesquisa
119.757%
A turbulência nos fluídos é um dos problemas mais desafiadores da atualidade, em especial no que se refere às aplicações industriais que envolvem processos de mistura de componentes, transferência de calor, lubrificação e degelo, injeção de combustível em câmaras de combustão, sistemas de propulsão de aviões e aeronaves. Diante de considerável interesse, no presente trabalho objetivou-se a análise da transição a turbulência de jatos em desenvolvimento temporal a números de Reynolds moderados utilizando a metodologia LES. Primeiramente desenvolveu-se um código computacional ESPC3D, com alta ordem de resolução para simulação de escoamentos do tipo jatos em desenvolvimento temporal em transição e/ou turbulentos. O código foi desenvolvido no Laboratório de Transferência de Calor e Massa e Dinâmica dos Fluidos (LTCM). Resultados consistentes foram obtidos do ponto de vista da análise física utilizando o código ESPC3D, com o qual realizou-se simulações de grandes escalas empregando o método pseudo-espectral de Fourier. Os resultados das simulações permitem verificar a transição a turbulência bem como suas estruturas típicas. Foi possível também verificar a influência da modelagem da turbulência utilizando a metodologia LES...

‣ Modelagem matemática de escoamentos bifásicos usando o Meto- Do Espectral de Fourier; Mathematics modeling of two-phase ows using spectral method of Fourier

Villela, Mariana Fernandes dos Santos
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Dissertação
Português
Relevância na Pesquisa
100.32187%
A simulação numérica de escoamentos bifásicos requer alta acurácia para se obter maiores detalhes do escoamento. Além disso, busca-se baixo custo computacional, pois de modo geral, as metodologias necessitam de um elevado refinamento da malha ou possuem um grande estêncil de discretização, o que as torna onerosas. Portanto, o presente trabalho propõe a utilização do método pseudo-espectral de Fourier para resolver problemas de escoamentos multifásicos, o qual tem alta ordem de convergência numérica e um baixo custo computacional, devido ao algoritmo denominado FFT (Fast Fourier Transform). Além destas vantagens, este método, ao resolver as equações de Navier-Stokes, desacopla a pressão da velocidade, através do método da projeção, sem a necessidade de resolver a equação de Poisson. Para tratar escoamentos bifásicos com geometria móvel e deformável, utiliza-se o método pseudo-espectral de Fourier acoplado com o método híbrido Front-Tracking/Front- Capturing. Este método híbrido trabalha com dois domínios, sendo um euleriano, onde se resolvem as equações para o uido (equação de conservação de massa e as equações de Navier- Stokes) e o outro, móvel, lagrangiano, utilizado para as interfaces. Para este método...

‣ Modelagem matemática de jatos em desenvolvimento espacial usando a metodologia pseudoespectral de Fourier

Moreira, Leonardo de Queiroz
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Tese de Doutorado
Português
Relevância na Pesquisa
79.802793%
A busca por métodos de alta acurácia e alta taxa de convergência com a finalidade de resolver as equações de Navier-Stokes é de grande interesse para estudiosos de CFD. Essa busca é motivada, pois existem fenômenos físicos, como a turbulência nos fluidos, para os quais apenas metodologias que possuem uma alta acurácia permitem obter uma solução satisfatória da física que caracteriza o problema. A principal dificuldade encontrada em obter alta acurácia na solução das equações de Navier-Stokes é o custo computacional. Neste sentindo, no MFLab, uma nova metodologia começou a ser desenvolvida com os trabalhos de Mariano (2007), Moreira (2007), Mariano (2011). Ela é baseada no acoplamento da metodologia pseudo-espectral de Fourier (MPEF) juntamente com a metodologia da fronteira imersa (MFI). As principais particularidades do MPEF é a alta acurácia numérica, aliada com o baixo custo computacional em termo relativos, pois não é necessário resolver um sistema linear do acoplamento pressão-velocidade. Entretanto, ela é limitada a problemas com condições de contorno periódicas. Com o intuito de expandir a aplicabilidade da MPEF a outros problemas da Dinâmica dos Fluidos Computacional (CFD), ela foi acoplada à metodologia de Fronteira Imersa (MFI). A MFI é uma metodologia desenvolvida para simular escoamentos sobre geometrias complexas e móveis usando malha cartesiana. Normalmente...

‣ Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer

Homann, Holger; Bec, Jérémie; Grauer, Rainer
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
48.01382%
The impact of turbulent fluctuations on the forces exerted by a fluid on a towed spherical particle is investigated by means of high-resolution direct numerical simulations. The measurements are carried out using a novel scheme to integrate the two-way coupling between the particle and the incompressible surrounding fluid flow maintained in a high-Reynolds-number turbulent regime. The main idea consists in combining a Fourier pseudo-spectral method for the fluid with an immersed-boundary technique to impose the no-slip boundary condition on the surface of the particle. Benchmarking of the code shows a good agreement with experimental and numerical measurements from other groups. A study of the turbulent wake downstream the sphere is also reported. The mean velocity deficit is shown to behave as the inverse of the distance from the particle, as predicted from classical similarity analysis. This law is reinterpreted in terms of the principle of "permanence of large eddies" that relates infrared asymptotic self-similarity to the law of decay of energy in homogeneous turbulence. The developed method is then used to attack the problem of an upstream flow that is in a developed turbulent regime. It is shown that the average drag force increases as a function of the turbulent intensity and the particle Reynolds number. This increase is significantly larger than predicted by standard drag correlations based on laminar upstream flows. It is found that the relevant parameter is the ratio of the viscous boundary layer thickness to the dissipation scale of the ambient turbulent flow. The drag enhancement can be motivated by the modification of the mean velocity and pressure profile around the sphere by small scale turbulent fluctuations.; Comment: 24 pages...

‣ Leading-edge vortex shedding from rotating wings

Kolomenskiy, Dmitry; Elimelech, Yossef; Schneider, Kai
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 19/05/2014 Português
Relevância na Pesquisa
47.847515%
The paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number $Re=250$. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented.

‣ Solution of the Schr\"odinger equation using exterior complex scaling and fast Fourier transform

Serov, Vladislav V.; Sergeeva, Tatiana A.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
48.475645%
The split-operator pseudo-spectral method based on the fast Fourier transform (SO-FFT) is a fast and accurate method for the numerical solution of the time-dependent Schr\"odinger-like equations (TDSE). As well as other grid-based approaches, SO-FFT encounters a problem of the unphysical reflection of the wave function from the grid boundaries. Exterior complex scaling (ECS) is an effective method widely applied for the suppression of the unphysical reflection. However, SO-FFT and ECS have not been used together heretofore because of the kinetic energy operator coordinate dependence that appears in ECS applying. We propose an approach for the combining the ECS with SO-FFT for the purpose of the solution of TDSE with outgoing-wave boundary conditions. Also, we propose an effective ECS-friendly FFT-based preconditioner for the solution of the stationary Schr\"odinger equation by means of the preconditioned conjugate gradients method.; Comment: 20 pages, 7 figures

‣ An efficient and accurate numerical method for the higher-order Boussinesq equation

Topkarci, Goksu; Borluk, Handan; Muslu, Gulcin M.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
47.847515%
In the present paper, we are concerned with the higher-order Boussinesq (HBq) equation involving the parameter $\eta_2$. We first derive the solitary wave solution and then we propose a Fourier pseudo-spectral scheme for the HBq equation. We prove the convergence of the semi-discrete scheme in the appropriate energy space. We study numerically behaviour of solutions to the HBq equation in the limit $\eta_2\rightarrow 0$. Propagation and head-on collision of solitary waves are simulated numerically over long time intervals for various power type nonlinearities. Special attention is paid to the blow-up solutions of the higher-order Boussinesq equation.

‣ Efficient computation of steady solitary gravity waves

Dutykh, Denys; Clamond, Didier
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
48.10093%
An efficient numerical method to compute solitary wave solutions to the free surface Euler equations is reported. It is based on the conformal mapping technique combined with an efficient Fourier pseudo-spectral method. The resulting nonlinear equation is solved via the Petviashvili iterative scheme. The computational results are compared to some existing approaches, such as the Tanaka method and Fenton's high-order asymptotic expansion. Several important integral quantities are numerically computed for a large range of amplitudes. The integral representation of the velocity and acceleration fields in the bulk of the fluid is also provided.; Comment: 21 pages, 12 figures, 66 references. Other authors papers can be downloaded at http://www.denys-dutykh.com/

‣ A pseudo-spectral method for a non-local KdV-Burgers equation posed on $\mathbb R$

de la Hoz, Francisco; Cuesta, Carlota Maria
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 25/11/2015 Português
Relevância na Pesquisa
68.59423%
In this paper, we present a new pseudo-spectral method to solve the initial value problem associated to a non-local KdV-Burgers equation involving a Caputo-type fractional derivative. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting.

‣ Transpose-free Fast Fourier Transform for Turbulence Simulation

Chatterjee, A. G.; Verma, M. K.; Chaudhuri, M.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 21/06/2014 Português
Relevância na Pesquisa
48.33492%
Pseudo-spectral method is one of the most accurate techniques for simulating turbulent flows. Fast Fourier transform (FFT) is an integral part of this method. In this paper, we present a new procedure to compute FFT in which we save operations during interprocess communications by avoiding transpose of the array. As a result, our transpose-free FFT is 15\% to 20\% faster than FFTW.

‣ Analysis of Non-Linear Mode Coupling of Cosmological Density Fluctuations by the Pseudo-Spectral Method

Gouda, Naoteru
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 05/06/1995 Português
Relevância na Pesquisa
69.56459%
The pseudo-spectral method is proposed for following the evolution of density and velocity fluctuations at the weakly non-linear stage in the expanding universe with a good accuracy. In this method, the evolution of density and velocity fluctuations is integrated in the Fourier Space with using FFT. This method is very useful to investigate accurately the non-linear dynamics in the weakly non-linear regime. Because the pseudo-spectral method works directly in the Fourier space, it should be especially useful for examining behavior in the Fourier domain, for an example, the effects of the non-linear coupling of different wave modes on the evolution of the power spectrum. I show the results of this analysis both in one and three dimensional systems.; Comment: 12 pages+3 figures, uuencoded, tar compressed Postscript. To appear in Prog.Theor.Phys.vol.94

‣ An Immersed Boundary Fourier Pseudo-spectral Method for Simulation of Confined Two-dimensional Incompressible Flows

Sabetghadam, Fereidoun; Badri, Mehdi; Sharafatmandjoor, Shervin; Kor, Hosnieh
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 27/10/2011 Português
Relevância na Pesquisa
80.119517%
The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier--Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to many other similar methods, there is not an explicit external forcing function in the present formulation. The desired immersed boundary conditions are approximated on some regular grid points, using different orders (up to second-order) polynomial extrapolations. At the beginning of each timestep, the solenoidal velocities (also satisfying the desired immersed boundary conditions), are obtained and fed into a conventional pseudo-spectral solver, together with a modified vorticity. The zero-mean pseudo-spectral solution is employed, and therefore, the method is applicable to the confined flows with zero mean velocity and vorticity, and without mean vorticity dynamics. In comparison to the classical Fourier pseudo-spectral solution, the method needs ${\cal O}(4(1+\log N)N)$ more operations for boundary condition settings. Therefore, the computational cost of the method, as a whole...

‣ Onset of fingering instability in a finite slice of adsorbed solute

Hota, Tapan Kumar; Pramanik, Satayajit; Mishra, Manoranjan
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 08/05/2015 Português
Relevância na Pesquisa
48.01382%
The effect of a linear adsorption isotherm on the onset of fingering instability in a miscible displacement in the application of liquid chromatography, pollutant contamination in aquifers etc. is investigated. Such fingering instability on the solute dynamics arise due to the miscible viscus fingering (VF) between the displacing fluid and sample solvent. We use a Fourier pseudo-spectral method to solve the initial value problem appeared in the linear stability analysis. The present linear stability analysis is of generic type and it captures the early time diffusion dominated region which was never expressible through the quasi-steady state analysis (QSSA). In addition, it measures the onset of instability more accurately than the QSSA methods. It is shown that the onset time depends non-monotonically on the retention parameter of the solute adsorption. This qualitative influence of the retention parameter on the onset of instability resemblances with the results obtained from direct numerical simulations of the nonlinear equations. Moreover, the present linear stability method helps for an appropriate characterisation of the linear and the nonlinear regimes of miscible VF instability and also can be useful for the fluid flow problems with the unsteady base-state.; Comment: 30 pages...

‣ Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

Loureiro, N. F.; Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M. S.; Zocco, A.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 11/05/2015 Português
Relevância na Pesquisa
48.47477%
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., Astrophys. J. Suppl. 182:310 (2009)]. Two main applications of these equations are magnetised (Alfvenic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence...

‣ Computing Nearly Singular Solutions Using Pseudo-Spectral Methods

Hou, Thomas Y.; Li, Ruo
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 11/01/2007 Português
Relevância na Pesquisa
60.307686%
In this paper, we investigate the performance of pseudo-spectral methods in computing nearly singular solutions of fluid dynamics equations. We consider two different ways of removing the aliasing errors in a pseudo-spectral method. The first one is the traditional 2/3 dealiasing rule. The second one is a high (36th) order Fourier smoothing which keeps a significant portion of the Fourier modes beyond the 2/3 cut-off point in the Fourier spectrum for the 2/3 dealiasing method. Both the 1D Burgers equation and the 3D incompressible Euler equations are considered. We demonstrate that the pseudo-spectral method with the high order Fourier smoothing gives a much better performance than the pseudo-spectral method with the 2/3 dealiasing rule. Moreover, we show that the high order Fourier smoothing method captures about $12 \sim 15%$ more effective Fourier modes in each dimension than the 2/3 dealiasing method. For the 3D Euler equations, the gain in the effective Fourier codes for the high order Fourier smoothing method can be as large as 20% over the 2/3 dealiasing method. Another interesting observation is that the error produced by the high order Fourier smoothing method is highly localized near the region where the solution is most singular...

‣ Numerical solution for a general class of nonlocal nonlinear wave equations

Borluk, Handan; Muslu, Gulcin M.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
48.839917%
A class of nonlocal nonlinear wave equation arises from the modeling of a one dimensional motion in a nonlinearly, nonlocally elastic medium. The equation involves a kernel function with nonnegative Fourier transform. We discretize the equation by using Fourier spectral method in space and we prove the convergence of the semidiscrete scheme. We then use a fully-discrete scheme, that couples Fourier pseudo-spectral method in space and 4th order Runge-Kutta in time, to observe the effect of the kernel function on solutions. To generate solitary wave solutions numerically, we use the Petviashvili's iteration method.