A melhor ferramenta para a sua pesquisa, trabalho e TCC!
Página 1 dos resultados de 29 itens digitais encontrados em 0.023 segundos
- ELSEVIER SCIENCE INC
- PERGAMON-ELSEVIER SCIENCE LTD
- Biblioteca Digitais de Teses e Dissertações da USP
- Elsevier B.V.
- Institute of Electrical and Electronics Engineers (IEEE)
- Universidade Estadual Paulista
- Biblioteca Digital da Unicamp
- Universidade Rice
- Hikari; Grupo de Investigaci??n An??lisis Funcional y Aplicaciones; Escuela de Ciencias y Humanidades
- Universidade Cornell
- Rochester Instituto de Tecnologia
- Revista de Matemática Teoría y Aplicaciones
- Mais Publicadores...
‣ Wavelet-Galerkin method for one-dimensional elastoplasticity and damage problems: Constitutive modeling and computational aspects
Fonte: ELSEVIER SCIENCE INC
Publicador: ELSEVIER SCIENCE INC
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
39.516094%
#elastoplasticity#damage mechanics#wavelets#Galerkin method#COMPACTLY SUPPORTED WAVELETS#BASES#Mathematics, Applied
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier Inc. All rights reserved.
Link permanente para citações:
‣ Computational aspects of harmonic wavelet Galerkin methods and an application to a precipitation front propagation model
Fonte: PERGAMON-ELSEVIER SCIENCE LTD
Publicador: PERGAMON-ELSEVIER SCIENCE LTD
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
39.704878%
#Harmonic wavelets#Connection coefficients#Pseudo-spectral#Burgers equation#Computational complexity#Front propagation#Precipitation fronts#Wavelet Galerkin method#BURGERS-EQUATION#SCHEME#Computer Science, Interdisciplinary Applications
This article is dedicated to harmonic wavelet Galerkin methods for the solution of partial differential equations. Several variants of the method are proposed and analyzed, using the Burgers equation as a test model. The computational complexity can be reduced when the localization properties of the wavelets and restricted interactions between different scales are exploited. The resulting variants of the method have computational complexities ranging from O(N(3)) to O(N) (N being the space dimension) per time step. A pseudo-spectral wavelet scheme is also described and compared to the methods based on connection coefficients. The harmonic wavelet Galerkin scheme is applied to a nonlinear model for the propagation of precipitation fronts, with the front locations being exposed in the sizes of the localized wavelet coefficients. (C) 2011 Elsevier Ltd. All rights reserved.; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); CNPq
Link permanente para citações:
‣ Avaliação do método Wavelet-Galerkin multi-malha para caracterização das propriedades de petróleo e subprodutos.; Wavelet-Galerkin multigrid method's evaluation for characterization of the properties of petroleum and subproducts.
Fonte: Biblioteca Digitais de Teses e Dissertações da USP
Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado
Formato: application/pdf
Publicado em 22/02/2007
Português
Relevância na Pesquisa
39.551%
#Computação aplicada#Metodologia de programação (avaliação)#Modelagem matemática#Petróleo (propriedades)#Petroleum characterization#Pseudo-components#Simulação#Wavelet-Galerkin
Atualmente, restrições ambientais impostas à industria de refino de petróleo estão fazendo com que se procure otimizar os seus processos. Uma das maneiras de se alcançar este objetivo é através da melhoria dos métodos analíticos de caracterização e dos métodos de representação, cuja finalidade é permitir maior precisão na simulação. O método mais comum de representação através de pseudocomponentes, apresenta algumas desvantagens, as quais não permitem precisão adequada em determinadas situações. Uma nova metodologia apresentada neste trabalho, que permite superar essas desvantagens foi aplicada em um exemplo de flash de petróleo. Esta metodologia envolve varias etapas: a implementação dos algoritmos necessários à representação das composições da mistura por funções de distribuição contínua e sua aproximação por funções wavelets, e a simplificação do modelo flash com a discretização "Wavelet-Galerkin" e sua resolução através de um enfoque multi-malha adaptativo. Neste contexo, na primeira etapa da tese foram apresentados diferentes aspectos relacionados ao processo complexo de caracterização de petróleos, que consideram sua importância tanto econômica quanto tecnológica. Mostraram-se também...
Link permanente para citações:
‣ Resolução numérica de EDPs utilizando ondaletas harmônicas; Numerical resolution of partial differential equations using harmonic wavelets
Fonte: Biblioteca Digitais de Teses e Dissertações da USP
Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado
Formato: application/pdf
Publicado em 16/07/2009
Português
Relevância na Pesquisa
59.207837%
#Galerkin-Wavelet method#harmonic wavelets#Método de Galerkin#método espectral#método pseudo-espectral#modelo de propagação de frentes de precipitação.#ondaletas#ondaletas harmônicas#precipitation front propagation model.#pseudo-spectral method#spectral method
Métodos de resolução numérica de equações diferenciais parciais que utilizam ondaletas como base vêm sendo desenvolvidos nas últimas décadas, mas existe uma carência de estudos mais profundos das características computacionais dos mesmos. Neste estudo analisou-se detalhadamente um método espectral de Galerkin com base de ondaletas harmônicas. Revisou-se a teoria matemática referente às ondaletas harmônicas, que mostrou ter grande similaridade com a teoria referente à base trigonométrica de Fourier. Diversos testes numéricos foram realizados. Ao analisarmos a resolução da equação do transporte linear, e também de transporte não linear (equação de Burgers), obtivemos boas aproximações da solução esperada. O custo computacional obtido foi similar ao método com base de Fourier, mas com ondaletas harmônicas foi possível usar a localidade das ondaletas para detectar características de localidade do sinal. Analisamos ainda uma abordagem pseudo-espectral para os casos não lineares, que resultaram em um expressivo aumento de eficiência. Tendo em vista o uso das propriedades de localidade das ondaletas, usamos o método de Galerkin com base de ondaletas harmônicas para resolver um sistema de equações referente a um modelo de propagação de frentes de precipitação. O método mostrou boas aproximações das soluções esperadas...
Link permanente para citações:
‣ Wavelet-Galerkin method for one-dimensional elastoplasticity and damage problems: Constitutive modeling and computational aspects
Fonte: Elsevier B.V.
Publicador: Elsevier B.V.
Tipo: Artigo de Revista Científica
Formato: 904-915
Português
Relevância na Pesquisa
39.516094%
This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.
Link permanente para citações:
‣ A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Fonte: Institute of Electrical and Electronics Engineers (IEEE)
Publicador: Institute of Electrical and Electronics Engineers (IEEE)
Tipo: Artigo de Revista Científica
Formato: 1413-1416
Português
Relevância na Pesquisa
59.130396%
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Link permanente para citações:
‣ Wavelet-Galerkin method for computations of electromagnetic fields - Computation of connection coefficients
Fonte: Institute of Electrical and Electronics Engineers (IEEE)
Publicador: Institute of Electrical and Electronics Engineers (IEEE)
Tipo: Artigo de Revista Científica
Formato: 644-648
Português
Relevância na Pesquisa
39.695552%
One of the keg issues which makes the wavelet-Galerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients, the characteristic of the present formulae and procedures is that the arbitrary point values of the connection co-efficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems.
Link permanente para citações:
‣ Wavelet-galerkin method for computations of electromagnetic fields-computation of connection coefficients
Fonte: Universidade Estadual Paulista
Publicador: Universidade Estadual Paulista
Tipo: Artigo de Revista Científica
Formato: 644-648
Português
Relevância na Pesquisa
39.731865%
#Connection coefficients#Wavelet bases#Waveletgalerkin method#Wavelet-Galerkin method#Galerkin methods#Wavelet transforms#Electromagnetic field theory
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Link permanente para citações:
‣ O metodo de Galerkin descontinuo com difusividade implicita e h-adaptabilidade baseada em tecnicas Wavelet
Fonte: Biblioteca Digital da Unicamp
Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado
Formato: application/pdf
Publicado em 15/01/2002
Português
Relevância na Pesquisa
39.96622%
O presente trabalho apresenta técnicas inovadoras para a aproximação numérica de leis de conservação sobre malhas não estruturadas. Implementa se um algoritmo h-adaptativo que utiliza um esquema numérico baseado em espaços de aproximação de funções polinomiais descontínuas. A escolha adaptável do refinamento h é feita mediante uma análise da regularidade da solução utilizando-se técnicas de análise wavelet. Esta análise permite determinar sub-domínios ou regiões de suavidade nos quais os elementos finitos são levados a níveis menos refinados, ou regiões de singularidade nas quais os elementos são refinados. Para evitar possíveis oscilações numéricas, um termo difusivo é aplicado no interior dos elementos finitos de uma região de singularidade ou próximo a ela. A análise wavelet também é utilizada para estabelecer a magnitude do termo difusivo. O esquema proposto aproveita idéias do método Runge-Kutta Galerkin descontínuo [16] e o método streamline difusion [33]. Como resultado, o esquema, na sua forma mais simples, é o método de volumes finitos h-adaptativo, e no caso de usar ordem de interpolação p ? 1, é o método Galerkin descontínuo h-adaptativo com esquema Euler no tempo e dispensando o uso de limitadores. é apresentado um estudo para estabelecer uma relação adequada entre o valor do número CFL (condição de estabilidade - Courant Priedrichs Lewi) e o coeficiente máximo do termo difusivo interno de tal forma a garantir a estabilidade do esquema e obter precisão numérica ótima. Quando o termo difusivo ?? ?...
Link permanente para citações:
‣ Representation and synthesis of random fields: ARMA, Galerkin, and wavelet procedures
Fonte: Universidade Rice
Publicador: Universidade Rice
Português
Relevância na Pesquisa
28.982944%
The dissertation considers methods of representation and synthesis of random fields and examines variance reduction techniques in conjunction with reliability analysis of engineering systems. The dissertation presents new approaches to the scale type method, the ARMA method, and the covariance method for random field simulation.
The scale type method is formulated by using the wavelet representation of random fields. In this regard it is shown that a large class of random fields is amenable to a simplified representation.
Also this dissertation presents a new efficient two-stage procedure for ARMA approximation of target stochastic processes. It is shown that this method yields quite low order ARMA models and reduces the requisite numerical computations for synthesizing samples of stochastic processes.
Criteria are established for efficient representation of random fields by a small number of random variables in conjunction with the covariance method of random field simulation.
A variance reduction method is developed by extending the Galerkin projection to stochastic mechanics problems. This method improves the Monte Carlo based reliability analysis of engineering systems with random properties.
The methods developed in this dissertation aim to expedite the application of stochastic mechanics concepts to design applications.
Link permanente para citações:
‣ Wavelets and the discrete ordinate method for the solution of radiative heat transfer through a participating medium
Fonte: Universidade Rice
Publicador: Universidade Rice
Português
Relevância na Pesquisa
38.5116%
Wavelet method is applied to the study of radiative heat transfer and combined conductive-radiative heat transfer through the gray and nongray participating medium in one- and two-dimensional (1-D and 2-D) geometries. The participating medium is assumed to have an index of refraction of unity and to be absorbing, emitting, and nonscattering. The surfaces of 1-D infinite parallel plates and 2-D rectangular enclosure are assumed to be black and isothermal.
The governing equations are the radiative transfer equation (RTE) and energy equation. The wavelet expansion is used to evaluate the spectral dependence of radiative intensity in RTE. And a set of differential equations about the expansion coefficients are developed by applying Galerkin method and discrete ordinates method (DOM). For 1-D problem, these equations are solved by finite difference method, and for 2-D problem, they are solved by finite volume method. The energy equation is solved simultaneously by applying the modified quasi-linearization algorithm (MQA) to obtain the temperature distribution and heat flux.
The results for the cases of radiative equilibrium, uniform internal heat generation, and combined conductive-radiative heat transfer with gray and nongray medium are given and compared with those obtained by other methods. The optical thickness of the medium ranges from optical thin to optical thick. The conduction-radiation parameter varies from radiation-dominated to conduction-dominated situations. The method is proved to be a powerful tool in analyzing the radiative heat transfer through the nongray participating media. The results of 2-D nongray problems are first presented.
Link permanente para citações:
‣ Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
Fonte: Hikari; Grupo de Investigaci??n An??lisis Funcional y Aplicaciones; Escuela de Ciencias y Humanidades
Publicador: Hikari; Grupo de Investigaci??n An??lisis Funcional y Aplicaciones; Escuela de Ciencias y Humanidades
Tipo: info:eu-repo/semantics/article; article; Art??culo; publishedVersion
Português
Relevância na Pesquisa
39.495012%
The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).
Link permanente para citações:
‣ An efficient space-time adaptive wavelet Galerkin method for time-periodic parabolic partial differential equations
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 22/01/2014
Português
Relevância na Pesquisa
29.192131%
We introduce a multitree-based adaptive wavelet Galerkin algorithm {for}
space-time discretized linear parabolic partial differential equations,
focusing on time-periodic problems. It is shown that the method converges with
the best possible rate in linear complexity and can be applied for a wide range
of wavelet bases. We discuss the implementational challenges arising from the
Petrov-Galerkin nature of the variational formulation and present numerical
results for the heat and a convection-diffusion-reaction equation.
Link permanente para citações:
‣ On Wavelet-Galerkin methods for Semilinear Parabolic Equations with Additive Noise
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
39.040476%
We consider the semilinear stochastic heat equation perturbed by additive
noise. After time-discretization by Euler's method the equation is split into a
linear stochastic equation and a non-linear random evolution equation. The
linear stochastic equation is discretized in space by a non-adaptive
wavelet-Galerkin method. This equation is solved first and its solution is
substituted into the nonlinear random evolution equation, which is solved by an
adaptive wavelet method. We provide mean square estimates for the overall
error.; Comment: 18 pages
Link permanente para citações:
‣ Wavelet Galerkin method for fractional elliptic differential equations
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 27/05/2014
Português
Relevância na Pesquisa
29.525708%
Under the guidance of the general theory developed for classical partial
differential equations (PDEs), we investigate the Riesz bases of wavelets in
the spaces where fractional PDEs usually work, and their applications in
numerically solving fractional elliptic differential equations (FEDEs). The
technique issues are solved and the detailed algorithm descriptions are
provided. Compared with the ordinary Galerkin methods, the wavelet Galerkin
method we propose for FEDEs has the striking benefit of efficiency, since the
condition numbers of the corresponding stiffness matrixes are small and
uniformly bounded; and the Toeplitz structure of the matrix still can be used
to reduce cost. Numerical results and comparison with the ordinary Galerkin
methods are presented to demonstrate the advantages of the wavelet Galerkin
method we provide.; Comment: 20 pages, 0 figures
Link permanente para citações:
‣ Wavelet methods to eliminate resonances in the Galerkin-truncated Burgers and Euler equations
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
29.470835%
It is well known that solutions to the Fourier-Galerkin truncation of the
inviscid Burgers equation (and other hyperbolic conservation laws) do not
converge to the physically relevant entropy solution after the formation of the
first shock. This loss of convergence was recently studied in detail in [S. S.
Ray et al., Phys. Rev. E 84, 016301 (2011)], and traced back to the appearance
of a spatially localized resonance phenomenon perturbing the solution. In this
work, we propose a way to remove this resonance by filtering a wavelet
representation of the Galerkin-truncated equations. A method previously
developed with a complex-valued wavelet frame is applied and expanded to
embrace the use of real-valued orthogonal wavelet basis, which we show to yield
satisfactory results only under the condition of adding a safety zone in
wavelet space. We also apply the complex-valued wavelet based method to the 2D
Euler equation problem, showing that it is able to filter the resonances in
this case as well.
Link permanente para citações:
‣ A wavelet-Galerkin algorithm of the E/B decomposition of CMB polarization maps
Fonte: Universidade Cornell
Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 24/10/2009
Português
Relevância na Pesquisa
29.192131%
We develop an algorithm of separating the $E$ and $B$ modes of the CMB
polarization from the noisy and discretized maps of Stokes parameter $Q$ and
$U$ in a finite area. A key step of the algorithm is to take a wavelet-Galerkin
discretization of the differential relation between the $E$, $B$ and $Q$, $U$
fields. This discretization allows derivative operator to be represented by a
matrix, which is exactly diagonal in scale space, and narrowly banded in
spatial space. We show that the effect of boundary can be eliminated by
dropping a few DWT modes located on or nearby the boundary. This method reveals
that the derivative operators will cause large errors in the $E$ and $B$ power
spectra on small scales if the $Q$ and $U$ maps contain Gaussian noise. It also
reveals that if the $Q$ and $U$ maps are random, these fields lead to the
mixing of the $E$ and $B$ modes. Consequently, the $B$ mode will be
contaminated if the powers of $E$ modes are much larger than that of $B$ modes.
Nevertheless, numerical tests show that the power spectra of both $E$ and $B$
on scales larger than the finest scale by a factor of 4 and higher can
reasonably be recovered, even when the power ratio of $E$- to $B$-modes is as
large as about 10$^2$, and the signal-to-noise ratio is equal to 10 and higher.
This is because the Galerkin discretization is free of false correlations...
Link permanente para citações:
‣ Implementation of the Wavelet-Galerkin method for boundary value problems
Fonte: Rochester Instituto de Tecnologia
Publicador: Rochester Instituto de Tecnologia
Tipo: Tese de Doutorado
Português
Relevância na Pesquisa
30.400044%
#Mechanical engineering#QA371 .S34 1998#Boundary value problems#Wavelets (Mathematics)#Differential equations
The objective of this work is to develop a systematic method of
implementing the Wavelet-Galerkin method for approximating solutions of
differential equations. The beginning of this project included understanding what
a wavelet is, and then becoming familiar with some of the applications. The
Wavelet-Galerkin method, as applied in this paper, does not use a wavelet at all.
In actuality, it uses the wavelet's scaling function. The distinction between the
two will be given in the following sections of this paper.
The sections of this thesis will include defining wavelets and their scaling
functions. This will give the reader valued insight to wavelets and Discrete
Wavelet Transforms (DWT). Following this will be a section defining the
Galerkin method. The purpose of this section will be to give the reader an
understanding of how weighted residual methods work, in particular, the Galerkin
Method. Next will be a section on how Scaling functions will be implemented in
the Galerkin method, forming the Wavelet-Galerkin Method.
The focus of this investigation will deal with solutions to a basic
homogeneous differential equation. The solution of this basic equation will be
analyzed using three separate, distinct methods, and then the results will be
compared. These methods include the Wavelet-Galerkin Method...
Link permanente para citações:
‣ Wavelet-galerkin method for computations of electromagnetic fields-computation of connection coefficients
Fonte: Institute of Electrical and Electronics Engineers (IEEE)
Publicador: Institute of Electrical and Electronics Engineers (IEEE)
Tipo: Artigo de Revista Científica
Formato: 644-648
Português
Relevância na Pesquisa
39.731865%
#Connection coefficients#Wavelet bases#Waveletgalerkin method#Wavelet-Galerkin method#Galerkin methods#Wavelet transforms#Electromagnetic field theory
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Link permanente para citações:
‣ An adaptive wavelet-galerkin method for parabolic partial differential equations
Fonte: Revista de Matemática Teoría y Aplicaciones
Publicador: Revista de Matemática Teoría y Aplicaciones
Tipo: Artigo de Revista Científica
Formato: text/html
Publicado em 01/06/2015
Português
Relevância na Pesquisa
39.27924%
In this paper an Adaptive Wavelet-Galerkin method for the solution of parabolic partial differential equations modeling physical problems with different spatial and temporal scales is developed. A semi-implicit time difference scheme is applied and B-spline multiresolution structure on the interval is used. As in many cases these solutions are known to present localized sharp gradients, local error estimators are designed and an efficient adaptive strategy to choose the appropriate scale for each time is developed. Finally, experiments were performed to illustrate the applicability and efficiency of the proposed method.
Link permanente para citações: