Página 1 dos resultados de 603 itens digitais encontrados em 0.006 segundos

‣ High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients

Tyner, Jeffrey W.; Erickson, Heidi; Deininger, Michael W. N.; Willis, Stephanie G.; Eide, Christopher A.; Levine, Ross L.; Heinrich, Michael C.; Gattermann, Norbert; Gilliland, D. Gary; Druker, Brian J.; Loriaux, Marc M.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 19/02/2009 Português
Relevância na Pesquisa
478.29824%
Transforming mutations in NRAS and KRAS are thought to play a causative role in the development of numerous cancers, including myeloid malignancies. Although mutations at amino acids 12, 13, or 61 account for the majority of oncogenic Ras variants, we hypothesized that less frequent mutations at alternate residues may account for disease in some patients with cancer of unexplained genetic etiology. To search for additional, novel RAS mutations, we sequenced all coding exons in NRAS, KRAS, and HRAS in 329 acute myeloid leukemia (AML) patients, 32 chronic myelomonocytic leukemia (CMML) patients, and 96 healthy individuals. We detected 4 “noncanonical” point mutations in 7 patients: N-RasG60E, K-RasV14I, K-RasT74P, and K-RasA146T. All 4 Ras mutants exhibited oncogenic properties in comparison with wild-type Ras in biochemical and functional assays. The presence of transforming RAS mutations outside of positions 12, 13, and 61 reveals that alternate mechanisms of transformation by RAS may be overlooked in screens designed to detect only the most common RAS mutations. Our results suggest that RAS mutations may play a greater role in leukemogenesis than currently believed and indicate that high-throughput screening for mutant RAS alleles in cancer should include analysis of the entire RAS coding region.

‣ Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice

Kuo, Ya-Huei; Zaidi, Sayyed K.; Gornostaeva, Svetlana; Komori, Toshihisa; Stein, Gary S.; Castilla, Lucio H.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 02/04/2009 Português
Relevância na Pesquisa
485.5076%
The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that sustained expression of Runx2 modulates Cbfβ-smooth muscle myosin heavy chain (SMMHC)–mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R, Mpo, Cebpd, the cell cycle inhibitor Cdkn1a, and myeloid markers Cebpa and Gfi1. In addition, full-length Runx2 cooperates with Cbfβ-SMMHC in leukemia development in transplantation assays. Furthermore, we show that the nuclear matrix–targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely, Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together, these results indicate that Runx2 is expressed in the stem cell compartment...

‣ MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1

Garzon, Ramiro; Liu, Shujun; Fabbri, Muller; Liu, Zhongfa; Heaphy, Catherine E.A.; Callegari, Elisa; Schwind, Sebastian; Pang, Jiuxia; Yu, Jianhua; Muthusamy, Natarajan; Havelange, Violaine; Volinia, Stefano; Blum, William; Rush, Laura J.; Perrotti, Danil
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 18/06/2009 Português
Relevância na Pesquisa
480.67035%
Aberrant DNA hypermethylation contributes to myeloid leukemogenesis by silencing structurally normal genes involved in hematopoiesis. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs. Recently, miRNAs have been shown to play a role as both targets and effectors in gene hypermethylation and silencing in malignant cells. In the current study, we showed that enforced expression of miR-29b in acute myeloid leukemia cells resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at both RNA and protein levels. This in turn led to decrease in global DNA methylation and reexpression of p15INK4b and ESR1 via promoter DNA hypomethylation. Although down-regulation of DNMT3A and DNMT3B was the result of a direct interaction of miR-29b with the 3′ untranslated regions of these genes, no predicted miR-29b interaction sites were found in the DNMT1 3′ untranslated regions. Further experiments revealed that miR-29b down-regulates DNMT1 indirectly by targeting Sp1, a transactivator of the DNMT1 gene. Altogether, these data provide novel functional links between miRNAs and aberrant DNA hypermethylation in acute myeloid leukemia and suggest a potentially therapeutic use of synthetic miR-29b oligonucleotides as effective hypomethylating compounds.

‣ Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies

Abdel-Wahab, Omar; Mullally, Ann; Hedvat, Cyrus; Garcia-Manero, Guillermo; Patel, Jay; Wadleigh, Martha; Malinge, Sebastien; Yao, JinJuan; Kilpivaara, Outi; Bhat, Rukhmi; Huberman, Kety; Thomas, Sabrena; Dolgalev, Igor; Heguy, Adriana; Paietta, Elisabeth;
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 02/07/2009 Português
Relevância na Pesquisa
482.38355%
Disease alleles that activate signal transduction are common in myeloid malignancies; however, there are additional unidentified mutations that contribute to myeloid transformation. Based on the recent identification of TET2 mutations, we evaluated the mutational status of TET1, TET2, and TET3 in myeloproliferative neoplasms (MPNs), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Sequencing of TET2 in 408 paired tumor/normal samples distinguished between 68 somatic mutations and 6 novel single nucleotide polymorphisms and identified TET2 mutations in MPN (27 of 354, 7.6%), CMML (29 of 69, 42%), AML (11 of 91, 12%), and M7 AML (1 of 28, 3.6%) samples. We did not identify somatic TET1 or TET3 mutations or TET2 promoter hypermethylation in MPNs. TET2 mutations did not cluster in genetically defined MPN, CMML, or AML subsets but were associated with decreased overall survival in AML (P = .029). These data indicate that TET2 mutations are observed in different myeloid malignancies and may be important in AML prognosis.

‣ Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyperproliferation and restores myeloid differentiation

Kandilci, Ayten; Grosveld, Gerard C.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 20/08/2009 Português
Relevância na Pesquisa
484.69266%
Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid-induced granulocytic differentiation. Here, we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34+ hematopoietic cells, lineage-depleted mouse bone marrow cells, and bipotential (granulocytic/monocytic) human acute myeloid leukemia cell lines. We show that exogenous MN1 stimulated the growth of CD34+ cells, which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and acute myeloid leukemia cell lines. Endogenous MN1 expression was higher in human CD34+ cells compared with both primary and in vitro–differentiated monocytes and granulocytes. Microarray and real-time reverse-transcribed polymerase chain reaction analysis of MN1-overexpressing CD34+ cells showed down-regulation of CEBPA and its downstream target genes. Reintroduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down-regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells.

‣ The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells

Oehler, Vivian G.; Guthrie, Katherine A.; Cummings, Carrie L.; Sabo, Kathleen; Wood, Brent L.; Gooley, Ted; Yang, Taimei; Epping, Mirjam T.; Shou, Yaping; Pogosova-Agadjanyan, Era; Ladne, Paula; Stirewalt, Derek L.; Abkowitz, Janis L.; Radich, Jerald P.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 08/10/2009 Português
Relevância na Pesquisa
482.38355%
The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly...

‣ SNP array analysis of tyrosine kinase inhibitor-resistant chronic myeloid leukemia identifies heterogeneous secondary genomic alterations

Nowak, Daniel; Ogawa, Seishi; Müschen, Markus; Kato, Motohiro; Kawamata, Norihiko; Meixel, Antonie; Nowak, Verena; Kim, Han S.; Kang, Sharon; Paquette, Ronald; Chang, Mi-Sook; Thoenissen, Nils H.; Mossner, Max; Hofmann, Wolf-Karsten; Kohlmann, Alexander;
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 04/02/2010 Português
Relevância na Pesquisa
480.67035%
To elucidate whether tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia is associated with characteristic genomic alterations, we analyzed DNA samples from 45 TKI-resistant chronic myeloid leukemia patients with 250K single nucleotide polymorphism arrays. From 20 patients, matched serial samples of pretreatment and TKI resistance time points were available. Eleven of the 45 TKI-resistant patients had mutations of BCR-ABL1, including 2 T315I mutations. Besides known TKI resistance-associated genomic lesions, such as duplication of the BCR-ABL1 gene (n = 8) and trisomy 8 (n = 3), recurrent submicroscopic alterations, including acquired uniparental disomy, were detectable on chromosomes 1, 8, 9, 17, 19, and 22. On chromosome 22, newly acquired and recurrent deletions of the IGLC1 locus were detected in 3 patients, who had previously presented with lymphoid or myeloid blast crisis. This may support a hypothesis of TKI-induced selection of subclones differentiating into immature B-cell progenitors as a mechanism of disease progression and evasion of TKI sensitivity.

‣ Use of chromosome engineering to model a segmental deletion of chromosome band 7q22 found in myeloid malignancies

Wong, Jasmine C. Y.; Zhang, Yan; Lieuw, Kenneth H.; Tran, Mary T.; Forgo, Erna; Weinfurtner, Kelley; Alzamora, Pilar; Kogan, Scott C.; Akagi, Keiko; Wolff, Linda; Le Beau, Michelle M.; Killeen, Nigel; Shannon, Kevin
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 03/06/2010 Português
Relevância na Pesquisa
483.6789%
Monosomy 7 and del(7q) are associated with adverse features in myeloid malignancies. A 2.5-Mb commonly deleted segment (CDS) of chromosome band 7q22 is implicated as harboring a myeloid tumor suppressor gene (TSG); however, molecular analysis of candidate TSGs has not uncovered loss of function. To determine whether haploinsufficiency for the 7q22 CDS contributes to myeloid leukemogenesis, we performed sequential gene targeting to flank a region of orthologous synteny on mouse chromosome band 5A3 with loxP sites. We then generated Mx1-Cre, 5A3fl mutant mice and deleted the targeted interval in vivo. Although excision was inefficient, we confirmed somatic deletion of the 5A3 CDS in the hematopoietic stem cell compartment. Mx1-Cre, 5A3fl mice show normal hematologic parameters and do not spontaneously develop myeloid malignancies. The 5A3fl deletion does not cooperate with oncogenic KrasG12D expression, Nf1 inactivation, or retroviral mutagenesis to accelerate leukemia development and did not modulate responsiveness to antileukemia drugs. These studies demonstrate that it is feasible to somatically delete a large chromosomal segment implicated in tumor suppression in hematopoietic cell populations in vivo; however, our data do not support the hypothesis that the 7q22/5A3 CDS interval contains a myeloid TSG.

‣ Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia

Bies, Juraj; Sramko, Marek; Fares, Joanna; Rosu-Myles, Michael; Zhang, Steven; Koller, Richard; Wolff, Linda
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 12/08/2010 Português
Relevância na Pesquisa
486.17707%
Inactivation of p15INK4b, an inhibitor of cyclin-dependent kinases, through DNA methylation is one of the most common epigenetic abnormalities in myeloid leukemia. Although this suggests a key role for this protein in myeloid disease suppression, experimental evidence to support this has not been reported. To address whether this event is critical for premalignant myeloid disorders and leukemia development, mice were generated that have loss of p15Ink4b specifically in myeloid cells. The p15Ink4bfl/fl-LysMcre mice develop nonreactive monocytosis in the peripheral blood accompanied by increased numbers of myeloid and monocytic cells in the bone marrow resembling the myeloproliferative form of chronic myelomonocytic leukemia. Spontaneous progression from chronic disease to acute leukemia was not observed. Nevertheless, MOL4070LTR retrovirus integrations provided cooperative genetic mutations resulting in a high frequency of myeloid leukemia in knockout mice. Two common retrovirus insertion sites near c-myb and Sox4 genes were identified, and their transcript up-regulated in leukemia, suggesting a collaborative role of their protein products with p15Ink4b-deficiency in promoting malignant disease. This new animal model demonstrates experimentally that p15Ink4b is a tumor suppressor for myeloid leukemia...

‣ Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis

Jo, Seung-Hee; Schatz, Jonathan H.; Acquaviva, Jaime; Singh, Harinder; Ren, Ruibao
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 14/10/2010 Português
Relevância na Pesquisa
480.67035%
Interferon regulatory factor 4 (IRF-4) plays important functions in B- and T-cell development and immune response regulation and was originally identified as the product of a proto-oncogene involved in chromosomal translocations in multiple myeloma. Although IRF-4 is expressed in myeloid cells, its function in that lineage is not known. The closely related family member IRF-8 is a critical regulator of myelopoiesis, which when deleted in mice results in a syndrome highly similar to human chronic myelogenous leukemia. In early lymphoid development, we have shown previously that IRF-4 and IRF-8 can function redundantly. We therefore investigated the effects of a combined loss of IRF-4 and IRF-8 on hematologic tumorigenesis. We found that mice deficient in both IRF-4 and IRF-8 develop from a very early age a more aggressive chronic myelogenous leukemia-like disease than mice deficient in IRF-8 alone, correlating with a greater expansion of granulocyte-monocyte progenitors. Although these results demonstrate, for the first time, that IRF-4 can function as tumor suppressor in myeloid cells, interestingly, all mice deficient in both IRF-4 and IRF-8 eventually develop and die of a B-lymphoblastic leukemia/lymphoma. Combined losses of IRF-4 and IRF-8 therefore can cooperate in the development of both myeloid and lymphoid tumors.

‣ Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias

Bansal, Hima; Bansal, Sanjay; Rao, Manjeet; Foley, Kevin P.; Sang, Jim; Proia, David A.; Blackman, Ronald K.; Ying, Weiwen; Barsoum, James; Baer, Maria R.; Kelly, Kevin; Swords, Ronan; Tomlinson, Gail E.; Battiwalla, Minoo; Giles, Francis J.; Lee, Kelvin
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 25/11/2010 Português
Relevância na Pesquisa
480.67035%
The aberrant overexpression of Wilms tumor 1 (WT1) in myeloid leukemia plays an important role in blast cell survival and resistance to chemotherapy. High expression of WT1 is also associated with relapse and shortened disease-free survival in patients. However, the mechanisms by which WT1 expression is regulated in leukemia remain unclear. Here, we report that heat shock protein 90 (Hsp90), which plays a critical role in the folding and maturation of several oncogenic proteins, associates with WT1 protein and stabilizes its expression. Pharmacologic inhibition of Hsp90 resulted in ubiquitination and subsequent proteasome-dependant degradation of WT1. RNAi-mediated silencing of WT1 reduced the survival of leukemia cells and increased the sensitivity of these cells to chemotherapy and Hsp90 inhibition. Furthermore, Hsp90 inhibitors 17-AAG [17-(allylamino)-17-demethoxygeldanamycin] and STA-9090 significantly reduced the growth of myeloid leukemia xenografts in vivo and effectively down-regulated the expression of WT1 and its downstream target proteins, c-Myc and Bcl-2. Collectively, our studies identify WT1 as a novel Hsp90 client and support the crucial role for the WT1–Hsp90 interaction in maintaining leukemia cell survival. These findings have significant implications for developing effective therapies for myeloid leukemias and offer a strategy to inhibit the oncogenic func-tions of WT1 by clinically available Hsp90 inhibitors.

‣ Olfactomedin 4 is a novel target gene of retinoic acids and 5-aza-2′-deoxycytidine involved in human myeloid leukemia cell growth, differentiation, and apoptosis

Liu, Wenli; Lee, Hyun Woo; Liu, Yueqin; Wang, Ruihong; Rodgers, Griffin P.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 02/12/2010 Português
Relevância na Pesquisa
483.6789%
Clinical application of retinoic acids (RAs) and demethylation agents has proven to be effective in treating certain myeloid leukemia patients. However, the target genes that mediate these antileukemia activities are still poorly understood. In this study, we identified olfactomedin 4 (OLFM4), a myeloid-lineage–specific gene from the olfactomedin family, as a novel target gene for RAs and the demethylation agent, 5-aza-2′-deoxycytidine. We demonstrated that the retinoic acid receptor alpha/retinoic X receptor alpha heterodimer binds to a retinoic acid response-element (DR5) site in the OLFM4 promoter and mediates all-trans-retinoic acid (ATRA)–induced transactivation of the OLFM4 gene. OLFM4 overexpression in HL-60 cells led to growth inhibition, differentiation, and apoptosis, and potentiated ATRA induction of these effects. Conversely, down-regulation of endogenous OLFM4 in acute myeloid leukemia-193 cells compromised ATRA-induced growth inhibition, differentiation, and apoptosis. Overexpression of OLFM4 in HL-60 cells inhibited constitutive and ATRA-induced phosphorylation of the eukaryote initiation factor 4E-binding protein 1 (4E-BP1), whereas down-regulation of OLFM4 protein in acute myeloid leukemia-193 cells increased 4E-BP1 phosphorylation...

‣ Incidence of therapy-related myeloid neoplasia after initial therapy for chronic lymphocytic leukemia with fludarabine-cyclophosphamide versus fludarabine: long-term follow-up of US Intergroup Study E2997

Smith, Mitchell R.; Neuberg, Donna; Flinn, Ian W.; Grever, Michael R.; Lazarus, Hillard M.; Rowe, Jacob M.; Dewald, Gordon; Bennett, John M.; Paietta, Elisabeth M.; Byrd, John C.; Hussein, Mohamad A.; Appelbaum, Frederick R.; Larson, Richard A.; Litzow, M
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 29/09/2011 Português
Relevância na Pesquisa
480.08414%
Chemotherapy-related myeloid neoplasia (t-MN) is a significant late toxicity concern after cancer therapy. In the randomized intergroup phase 3 E2997 trial, initial therapy of chronic lymphocytic leukemia with fludarabine plus cyclophosphamide (FC) compared with fludarabine alone yielded higher complete and overall response rates and longer progression-free, but not overall, survival. Here, we report t-MN incidence in 278 patients enrolled in E2997 with a median 6.4-year follow-up. Thirteen cases (4.7%) of t-MN occurred at a median of 5 years from initial therapy for chronic lymphocytic leukemia, 9 after FC and 4 after fludarabine alone. By cumulative incidence methodology, rates of t-MN at 7 years were 8.2% after FC and 4.6% after fludarabine alone (P = .09). Seven of the 9 cases of t-MN after FC occurred without additional therapy. Abnormalities involving chromosomes 5 or 7 were found in 10 cases, which suggests alkylator involvement. These data suggest that FC may induce more t-MN than fludarabine alone.

‣ Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia

Aue, Georg; Du, Yang; Cleveland, Susan M.; Smith, Stephen B.; Davé, Utpal P.; Liu, Delong; Weniger, Marc A.; Metais, Jean Yves; Jenkins, Nancy A.; Copeland, Neal G.; Dunbar, Cynthia E.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 27/10/2011 Português
Relevância na Pesquisa
485.5076%
Cooperation of multiple mutations is thought to be required for cancer development. In previous studies, murine myeloid leukemias induced by transducing wild-type bone marrow progenitors with a SRY sex determining region Y-box 4 (Sox4)–expressing retrovirus frequently carried proviral insertions at Sfpi1, decreasing its mRNA levels, suggesting that reduced Sfpi1 expression cooperates with Sox4 in myeloid leukemia induction. In support of this hypothesis, we show here that mice receiving Sox4 virus-infected Sfpi1ko/+ bone marrow progenitors developed myeloid leukemia with increased penetrance and shortened latency. Interestingly, Sox4 expression further decreased Sfpi1 transcription. Ectopic SOX4 expression reduced endogenous PU.1 mRNA levels in HL60 promyelocytes, and decreased Sfpi1 mRNA levels were also observed in the spleens of leukemic and preleukemic mice receiving Sox4 virus-infected wild-type bone marrow cells. In addition, Sox4 protein bound to a critical upstream regulatory element of Sfpi1 in ChIP assays. Such cooperation probably occurs in de novo human acute myeloid leukemias, as an analysis of 285 acute myeloid leukemia patient samples found a significant negative correlation between SOX4 and PU.1 expression. Our results establish a novel cooperation between Sox4 and reduced Sfpi1 expression in myeloid leukemia development and suggest that SOX4 could be an important new therapeutic target in human acute myeloid leukemia.

‣ Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10

Oakley, Kevin; Han, Yufen; Vishwakarma, Bandana A.; Chu, Su; Bhatia, Ravi; Gudmundsson, Kristbjorn O.; Keller, Jonathan; Chen, Xiongfong; Vasko, Vasyl; Jenkins, Nancy A.; Copeland, Neal G.; Du, Yang
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 21/06/2012 Português
Relevância na Pesquisa
486.7368%
Acquisition of self-renewal capability by myeloid progenitors to become leukemic stem cells during myeloid leukemia development is poorly understood. Here, we show that Setbp1 overexpression efficiently confers self-renewal capability to myeloid progenitors in vitro, causing their immortalization in the presence of stem cell factor and IL-3. Self-renewal after immortalization requires continuous Setbp1 expression. We also found that Hoxa9 and Hoxa10 mRNA are present at dramatically higher levels in Setbp1-immortalized cells compared with other immortalized cells, and are induced shortly after Setbp1 expression in primary myeloid progenitors. Suppression of either gene in Setbp1-immortalized cells drastically reduces their colony-forming capability. Interestingly, Setbp1 protein associates with Hoxa9 and Hoxa10 promoters in chromatin immunoprecipitation assays in these cells, suggesting that both are direct transcriptional targets of Setbp1. Setbp1 also promotes self-renewal of myeloid progenitors in vivo as its coexpression with BCR/ABL transforms primary mouse myeloid progenitors, generating aggressive leukemias in recipient mice resembling chronic myelogenous leukemia (CML) myeloid blast crisis. Increased SETBP1 mRNA levels were also detected in a subset of CML advanced phase/blast crisis patients with high levels of HOXA9 and HOXA10 expression. Thus...

‣ Sox4 cooperates with CREB in myeloid transformation

Sandoval, Salemiz; Kraus, Christina; Cho, Er-Chieh; Cho, Michelle; Bies, Juraj; Manara, Elena; Accordi, Benedetta; Landaw, Elliot M.; Wolff, Linda; Pigazzi, Martina; Sakamoto, Kathleen M.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 05/07/2012 Português
Relevância na Pesquisa
482.38355%
The cAMP response element-binding protein (CREB) is a nuclear transcription factor that is critical for normal and neoplastic hematopoiesis. Previous studies have demonstrated that CREB is a proto-oncogene whose overexpression promotes cellular proliferation in hematopoietic cells. Transgenic mice that overexpress CREB in myeloid cells develop a myeloproliferative disease with splenomegaly and aberrant myelopoiesis. However, CREB overexpressing mice do not spontaneously develop acute myeloid leukemia. In this study, we used retroviral insertional mutagenesis to identify genes that accelerate leukemia in CREB transgenic mice. Our mutagenesis screen identified several integration sites, including oncogenes Gfi1, Myb, and Ras. The Sox4 transcription factor was identified by our screen as a gene that cooperates with CREB in myeloid leukemogenesis. We show that the transduction of CREB transgenic mouse bone marrow cells with a Sox4 retrovirus increases survival and self-renewal of cells in vitro. Furthermore, leukemic blasts from the majority of acute myeloid leukemia patients have higher CREB, phosphorylated CREB, and Sox 4 protein expression. Sox4 transduction of mouse bone marrow cells results in increased expression of CREB target genes. We also demonstrate that CREB is a direct target of Sox4 by chromatin immunoprecipitation assays. These results indicate that Sox4 and CREB cooperate and contribute to increased proliferation of hematopoietic progenitor cells.

‣ Stress hematopoiesis reveals abnormal control of self-renewal, lineage bias, and myeloid differentiation in Mll partial tandem duplication (Mll-PTD) hematopoietic stem/progenitor cells

Zhang, Yue; Yan, Xiaomei; Sashida, Goro; Zhao, Xinghui; Rao, Yalan; Goyama, Susumu; Whitman, Susan P.; Zorko, Nicholas; Bernot, Kelsie; Conway, Rajeana M.; Witte, David; Wang, Qian-fei; Tenen, Daniel G.; Xiao, Zhijian; Marcucci, Guido; Mulloy, James C.; G
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 02/08/2012 Português
Relevância na Pesquisa
480.67035%
One mechanism for disrupting the MLL gene in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is through partial tandem duplication (MLL-PTD); however, the mechanism by which MLL-PTD contributes to MDS and AML development and maintenance is currently unknown. Herein, we investigated hematopoietic stem/progenitor cell (HSPC) phenotypes of Mll-PTD knock-in mice. Although HSPCs (Lin−Sca1+Kit+ (LSK)/SLAM+ and LSK) in MllPTD/WT mice are reduced in absolute number in steady state because of increased apoptosis, they have a proliferative advantage in colony replating assays, CFU-spleen assays, and competitive transplantation assays over wild-type HSPCs. The MllPTD/WT-derived phenotypic short-term (ST)–HSCs/multipotent progenitors and granulocyte/macrophage progenitors have self-renewal capability, rescuing hematopoiesis by giving rise to long-term repopulating cells in recipient mice with an unexpected myeloid differentiation blockade and lymphoid-lineage bias. However, MllPTD/WT HSPCs never develop leukemia in primary or recipient mice, suggesting that additional genetic and/or epigenetic defects are necessary for full leukemogenic transformation. Thus, the Mll-PTD aberrantly alters HSPCs, enhances self-renewal, causes lineage bias...

‣ Induction of Chromosomal Instability via Telomere Dysfunction and Epigenetic Alterations in Myeloid Neoplasia

Vajen, Beate; Thomay, Kathrin; Schlegelberger, Brigitte
Fonte: MDPI Publicador: MDPI
Tipo: Artigo de Revista Científica
Publicado em 04/07/2013 Português
Relevância na Pesquisa
495.02645%
Chromosomal instability (CIN) is a characteristic feature of cancer. In this review, we concentrate on mechanisms leading to CIN in myeloid neoplasia, i.e., myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The pathogenesis of myeloid neoplasia is complex and involves genetic and epigenetic alterations. Chromosome aberrations define specific subgroups and guide clinical decisions. Genomic instability may play an essential role in leukemogenesis by promoting the accumulation of genetic lesions responsible for clonal evolution. Indeed, disease progression is often driven by clonal evolution into complex karyotypes. Earlier studies have shown an association between telomere shortening and advanced MDS and underlined the important role of dysfunctional telomeres in the development of genetic instability and cancer. Several studies link chromosome rearrangements and aberrant DNA and histone methylation. Genes implicated in epigenetic control, like DNMT3A, ASXL1, EZH2 and TET2, have been discovered to be mutated in MDS. Moreover, gene-specific hypermethylation correlates highly significantly with the risk score according to the International Prognostic Scoring System. In AML, methylation profiling also revealed clustering dependent on the genetic status. Clearly...

‣ NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases

Reddy, Mamatha M.; Fernandes, Margret S.; Salgia, Ravi; Levine, Ross L.; Griffin, James D.; Sattler, Martin
Fonte: Harvard University Publicador: Harvard University
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
482.38355%
Transformation by tyrosine kinase oncogenes in myeloid malignancies, including BCR-ABL in chronic myeloid leukemia, FLT3ITD in acute myeloid leukemia (AML) or JAK2V617F in myeloproliferative neoplasms (MPN), is associated with increased growth and cytoskeletal abnormalities. Using targeted approaches against components of the superoxide-producing NADPH-oxidases, including NOX2, NOX4 and the common p22phox subunit of NOX1-4, myeloid cells were found to display reduced cell growth and spontaneous migration. Consistent with a role of NOX as regulators of membrane proximal signaling events in non-phagocytic cells, NOX2 and NOX4 were not involved in the excess production of intracellular reactive oxygen species and did not significantly increase oxygen consumption. All NOX family members are controlled in part through levels of the rate-limiting substrate NADPH, which was found to be significantly elevated in tyrosine kinase oncogene transformed cells. Also, reduced phosphorylation of the actin filament crosslinking protein MARCKS in response to suppression of p22phox hints at a novel effector of NOX signaling. MARCKS was also found to be required for increased migration. Overall, these data suggest a model whereby NOX links metabolic NADPH production to cellular events that directly contribute to transformation.

‣ The BCR-ABL35INS insertion/truncation mutant is kinase-inactive and does not contribute to tyrosine kinase inhibitor resistance in chronic myeloid leukemia

O'Hare, Thomas; Zabriskie, Matthew S.; Eide, Christopher A.; Agarwal, Anupriya; Adrian, Lauren T.; You, Huihong; Corbin, Amie S.; Yang, Fei; Press, Richard D.; Rivera, Victor M.; Toplin, Julie; Wong, Stephane; Deininger, Michael W.; Druker, Brian J.
Fonte: American Society of Hematology Publicador: American Society of Hematology
Tipo: Artigo de Revista Científica
Publicado em 10/11/2011 Português
Relevância na Pesquisa
480.67035%
Chronic myeloid leukemia is effectively treated with imatinib, but reactivation of BCR-ABL frequently occurs through acquisition of kinase domain mutations. The additional approved ABL tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib, along with investigational TKIs such as ponatinib (AP24534) and DCC-2036, support the possibility that mutation-mediated resistance in chronic myeloid leukemia can be fully controlled; however, the molecular events underlying resistance in patients lacking BCR-ABL point mutations are largely unknown. We previously reported on an insertion/truncation mutant, BCR-ABL35INS, in which structural integrity of the kinase domain is compromised and all ABL sequence beyond the kinase domain is eliminated. Although we speculated that BCR-ABL35INS is kinase-inactive, recent reports propose this mutant contributes to ABL TKI resistance. We present cell-based and biochemical evidence establishing that BCR-ABL35INS is kinase-inactive and does not contribute to TKI resistance, and we find that detection of BCR-ABL35INS does not consistently track with or explain resistance in clinical samples from chronic myeloid leukemia patients.