Página 1 dos resultados de 53955 itens digitais encontrados em 0.015 segundos

‣ Regulation of RNA Synthesis by the Genomic Termini of Vesicular Stomatitis Virus: Identification of Distinct Sequences Essential for Transcription but Not Replication

Whelan, Sean P. J.; Wertz, Gail W.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/1999 Português
Relevância na Pesquisa
36.460022%
The RNA-dependent RNA polymerase of vesicular stomatitis virus (VSV), a nonsegmented negative-strand RNA virus, directs two discrete RNA synthetic processes, transcription and replication. Available evidence suggests that the two short extragenic regions at the genomic termini, the 3′ leader (Le) and the complement of the 5′ trailer (TrC), contain essential signals for these processes. We examined the roles in transcription and replication of sequences in Le and TrC by monitoring the effects of alterations to the termini of subgenomic replicons, or infectious viruses, on these RNA synthetic processes. Distinct elements in Le were found to be required for transcription that were not required for replication. The promoter for mRNA transcription was shown to include specific sequence elements within Le at positions 19 to 29 and 34 to 46, a separate element at nucleotides 47 to 50, the nontranscribed leader-N gene junction. The sequence requirements for transcription within the Le region could not be supplied by sequences found at the equivalent positions in TrC. In contrast, sequences from either Le or TrC functioned well to signal replication, indicating that within the confines of the VSV termini, the sequence requirements for replication were less stringent. Deletions engineered at the termini showed that the terminal 15 nucleotides of either Le or TrC allowed a minimal level of replication. Within these confines...

‣ DNA Replication of Human Papillomavirus Type 31 Is Modulated by Elements of the Upstream Regulatory Region That Lie 5′ of the Minimal Origin

Hubert, Walter G.; Kanaya, Taro; Laimins, Laimonis A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/1999 Português
Relevância na Pesquisa
36.45234%
The viral replication factors E1 and E2 of papillomaviruses are necessary and sufficient to replicate plasmids containing the minimal origin of DNA replication in transient assays. Under physiological conditions, the upstream regulatory region (URR) governs expression of the early viral genes. To determine the effect of URR elements on E1 and E2 expression specifically, and on the regulation of DNA replication during the various phases of the viral life cycle, we carried out a systematic replication study with entire genomes of human papillomavirus type 31 (HPV31), a high-risk oncogenic type. We constructed a series of URR deletions, spacer replacements, and point mutations to analyze the role of the keratinocyte enhancer (KE) element, the auxiliary enhancer (AE) domain, and the L1-proximal end of the URR (5′-URR domain) in DNA replication during establishment, maintenance, and vegetative viral DNA amplification. Using transient and stable replication assays, we demonstrate that the KE and AE are necessary for efficient E1 and E2 gene expression and that the KE can also directly modulate viral replication. KE-mediated activation of replication is dependent on the position and orientation of the element. Mutation of either one of the four Ap1 sites...

‣ Nuclear IE2 Structures Are Related to Viral DNA Replication Sites during Baculovirus Infection

Mainz, Daniela; Quadt, Ilja; Knebel-Mörsdorf, Dagmar
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /05/2002 Português
Relevância na Pesquisa
36.460022%
The ie2 gene of Autographa californica multicapsid nuclear polyhedrosis virus is 1 of the 10 baculovirus genes that have been identified as factors involved in viral DNA replication. IE2 is detectable in the nucleus as one of the major early-expressed proteins and exhibits a dynamic localization pattern during the infection cycle (D. Murges, I. Quadt, J. Schröer, and D. Knebel-Mörsdorf, Exp. Cell Res. 264:219-232, 2001). Here, we investigated whether IE2 localized to regions of viral DNA replication. After viral DNA was labeled with bromodeoxyuridine (BrdU), confocal imaging indicated that defined IE2 domains colocalized with viral DNA replication centers as soon as viral DNA replication was detectable. In addition, a subpopulation of IE2 structures colocalized with two further virus-encoded replication factors, late expression factor 3 (LEF-3) and the DNA binding protein (DBP). While DBP and LEF-3 structures always colocalized and enlarged simultaneously with viral DNA replication sites, only those IE2 structures that colocalized with replication sites also colocalized with DBP. Replication and transcription of DNA viruses in association with promyelocytic leukemia protein (PML) oncogenic domains have been observed. By confocal imaging we demonstrated that the human PML colocalized with IE2. Triple staining revealed PML/IE2 domains in the vicinity of viral DNA replication centers...

‣ Large Hepatitis Delta Antigen Is Not a Suppressor of Hepatitis Delta Virus RNA Synthesis once RNA Replication Is Established

Macnaughton, Thomas B.; Lai, Michael M. C.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /10/2002 Português
Relevância na Pesquisa
36.45234%
Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle...

‣ The Acidic Activation Domain of the Baculovirus Transactivator IE1 Contains a Virus-Specific Domain Essential for DNA Replication†

Pathakamuri, Joseph A.; Theilmann, David A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /06/2002 Português
Relevância na Pesquisa
36.45234%
IE1 is a potent transcriptional transactivator of the baculovirus Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) and has been shown to be essential for viral DNA replication. IE1 contains an acidic activation domain (AAD) at the N terminus that is essential for transcriptional transactivation, but its role in viral DNA replication is unknown. In this study the role of the IE1 AAD in DNA replication is investigated. We have determined that deletion of the AAD eliminates the ability of IE1 to support DNA replication, showing that the AAD is essential for DNA replication as well as transcriptional transactivation. Replacement of the AAD with the archetype domain from herpesvirus VP16 and the evolutionarily related domain from Autographa californica MNPV (AcMNPV) IE1 produces chimeric proteins that are potent transactivators. Surprisingly, however, these chimeric proteins were unable to support DNA replication, indicating that there is a host- or virus-specific replication subdomain in the AAD that was not functionally replaced by the VP16 or AcMNPV AAD. Using N- and C-terminal deletion mutants, the region of the AAD that was essential for DNA replication was mapped to amino acids 1 to 65. AAD deletion mutants also showed that an IE1 that is functional for transcriptional transactivation is not required for viral DNA replication. The IE1 AAD therefore contains an essential replication domain that is separable from the transcriptional activation domains. Our results suggest that IE1 specifically interacts with a component of the viral replication complex...

‣ Human Papillomavirus Type 31 Replication Modes during the Early Phases of the Viral Life Cycle Depend on Transcriptional and Posttranscriptional Regulation of E1 and E2 Expression

Hubert, Walter G.; Laimins, Laimonis A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/2002 Português
Relevância na Pesquisa
36.460022%
The E1 and E2 proteins are both required for papillomavirus DNA replication, and replication efficiency is controlled by the abundance of these factors. In human papillomaviruses (HPVs), the regulation of E1 and E2 expression and its effect on viral replication are not well understood. In particular, it is not known if E1 and E2 modulate their own expression and how posttranscriptional mechanisms may affect the levels of the replication proteins. Previous studies have implicated splicing within the E6 open reading frame (ORF) as being important for modulating replication of HPV type 31 (HPV31) through altered expression of E1 and E2. To analyze the function of the E6 intron in viral replication more specifically, we examined the effects of E6 splicing mutations in the context of entire viral genomes in transient assays. HPV31 genomes which had mutations in the splice donor site (E6SD) or the splice acceptor site (E6SA), a deletion of the intron (E6ID), or substituted heterologous intron sequences (E6IS) were constructed. Compared to wild-type (wt) HPV31, pHPV31-E6SD, -E6SA, and -E6IS replicated inefficiently while pHPV31-E6ID replicated at an intermediate level. Cotransfection of the E6 mutant genomes with an E1 expression vector strongly activated their replication levels...

‣ Spatial and Temporal Organization of Adeno-Associated Virus DNA Replication in Live Cells

Fraefel, Cornel; Greet Bittermann, Anne; Büeler, Hansruedi; Heid, Irma; Bächi, Thomas; Ackermann, Mathias
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/2004 Português
Relevância na Pesquisa
36.466812%
Upon cell entry, the genomes of herpes simplex virus type 1 (HSV-1) and adenovirus (Ad) associate with distinct nuclear structures termed ND10 or promyelocytic leukemia (PML) nuclear bodies (NBs). PML NB morphology is altered or disrupted by specific viral proteins as replication proceeds. We examined whether adeno-associated virus (AAV) replication compartments also associate with PML NBs, and whether modification or disruption of these by HSV-1 or Ad, both of which are helper viruses for AAV, is necessary at all. Furthermore, to add a fourth dimension to our present view of AAV replication, we established an assay that allows visualization of AAV replication in live cells. A recombinant AAV containing 40 lac repressor binding sites between the AAV inverted terminal repeats was constructed. AAV Rep protein and helper virus-mediated replication of this recombinant AAV genome was visualized by binding of enhanced yellow fluorescent protein-lac repressor fusion protein to double-stranded AAV replication intermediates. We demonstrate in live cells that AAV DNA replication occurs in compartments which colocalize with AAV Rep. Early after infection, the replication compartments were small and varied in numbers from 2 to more than 40 per cell nucleus. Within 4 to 8 h...

‣ By Inhibiting Replication, the Large Hepatitis Delta Antigen Can Indirectly Regulate Amber/W Editing and Its Own Expression

Sato, Shuji; Cornillez-Ty, Cromwell; Lazinski, David W.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /08/2004 Português
Relevância na Pesquisa
36.472856%
Hepatitis delta virus (HDV) expresses two essential proteins with distinct functions. The small hepatitis delta antigen (HDAg-S) is expressed throughout replication and is needed to promote that process. The large form (HDAg-L) is farnesylated, is expressed only at later times via RNA editing of the amber/W site, and is required for virion assembly. When HDAg-L is artificially expressed at the onset of replication, it strongly inhibits replication. However, there is controversy concerning whether HDAg-L expressed naturally at later times as a consequence of editing and replication can similarly inhibit replication. Here, by stabilizing the predicted secondary structure downstream from the amber/W site, a replication-competent HDV mutant that exhibited levels of editing higher than those of the wild type was created. This mutant expressed elevated levels of HDAg-L early during replication, and at later times, its replication aborted prematurely. No further increase in amber/W editing was observed following the cessation of replication, indicating that editing was coupled to replication. A mutation in HDAg-L and a farnesyl transferase inhibitor were both used to abolish the ability of HDAg-L to inhibit replication. Such treatments rescued the replication defect of the overediting mutant...

‣ Architecture of Replication Compartments Formed during Epstein-Barr Virus Lytic Replication

Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Shirata, Noriko; Tsurumi, Tatsuya
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/2005 Português
Relevância na Pesquisa
36.472856%
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein...

‣ Tyrosine 3 of Poliovirus Terminal Peptide VPg(3B) Has an Essential Function in RNA Replication in the Context of Its Precursor Protein, 3AB▿

Liu, Ying; Franco, David; Paul, Aniko V.; Wimmer, Eckard
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
36.460022%
Poliovirus (PV) VPg is a genome-linked protein that is essential for the initiation of viral RNA replication. It has been well established that RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine (Y3) in VPg by the viral RNA polymerase 3Dpol, but it is not yet known whether the substrate for uridylylation in vivo is the free peptide itself or one of its precursors. The aim of this study was to use complementation analyses to obtain information about the true in vivo substrate for uridylylation by 3Dpol. Previously, it was shown that a VPg mutant, in which tyrosine 3 and threonine 4 were replaced by phenylalanine and alanine (3F4A), respectively, was nonviable. We have now tested whether wild-type forms of proteins 3B, 3BC, 3BCD, 3AB, 3ABC, and P3 provided either in trans or in cis could rescue the replication defect of the VPg(3F4A) mutations in the PV polyprotein. Our results showed that proteins 3B, 3BC, 3BCD, and P3 were unable to complement the RNA replication defect in dicistronic PV or dicistronic luciferase replicons in vivo. However, cotranslation of the P3 precursor protein allowed rescue of RNA replication of the VPg(3F4A) mutant in an in vitro cell-free translation-RNA replication system...

‣ Restriction of Human Polyomavirus BK Virus DNA Replication in Murine Cells and Extracts▿

Mahon, Cathal; Liang, Bo; Tikhanovich, Irina; Abend, Johanna R.; Imperiale, Michael J.; Nasheuer, Heinz P.; Folk, William R.
Fonte: American Society for Microbiology (ASM) Publicador: American Society for Microbiology (ASM)
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
36.460022%
BK virus (BKV) causes persistent and asymptomatic infections in most humans and is the etiologic agent of polyomavirus-associated nephropathy (PVAN) and other pathologies. Unfortunately, there are no animal models with which to study activation of BKV replication in the human kidney and the accompanying PVAN. Here we report studies of the restriction of BKV replication in murine cells and extracts and the cause(s) of this restriction. Upon infection of murine cells, BKV expressed large T antigen (TAg), but viral DNA replication and progeny were not detected. Transfection of murine cells with BKV TAg expression vectors also caused TAg expression without accompanying DNA replication. Analysis of the replication of DNAs containing chimeric BKV and murine polyomavirus origins revealed the importance of BKV core origin sequences and TAg for DNA replication. A sensitive assay was developed with purified BKV TAg that supported TAg-dependent BKV DNA replication with human but not with murine cell extracts. Addition of human replication proteins, DNA polymerase α-primase, replication protein A, or topoisomerase I to the murine extracts with BKV TAg did not rescue viral DNA replication. Notably, addition of murine extracts to human extracts inhibited BKV TAg-dependent DNA replication at a step prior to or during unwinding of the viral origin. These findings and differences in replication specificity between BKV TAg and the TAgs of simian virus 40 (SV40) and JC virus (JCV) and their respective origins implicate features of the BKV TAg and origin distinct from SV40 and JCV in restriction of BKV replication in murine cells.

‣ Authentic In Vitro Replication of Two Tombusviruses in Isolated Mitochondrial and Endoplasmic Reticulum Membranes

Xu, Kai; Huang, Tyng-Shyan; Nagy, Peter D.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /12/2012 Português
Relevância na Pesquisa
36.45234%
Replication of plus-stranded RNA viruses takes place on membranous structures derived from various organelles in infected cells. Previous works with Tomato bushy stunt tombusvirus (TBSV) revealed the recruitment of either peroxisomal or endoplasmic reticulum (ER) membranes for replication. In case of Carnation Italian ringspot tombusvirus (CIRV), the mitochondrial membranes supported CIRV replication. In this study, we developed ER and mitochondrion-based in vitro tombusvirus replication assays. Using purified recombinant TBSV and CIRV replication proteins, we showed that TBSV could use the purified yeast ER and mitochondrial preparations for complete viral RNA replication, while CIRV preferentially replicated in the mitochondrial membranes. The viral RNA became partly RNase resistant after ∼40 to 60 min of incubation in the purified ER and mitochondrial preparations, suggesting that assembly of TBSV and CIRV replicases could take place in the purified ER and mitochondrial membranes in vitro. Using chimeric and heterologous combinations of replication proteins, we showed that multiple domains within the replication proteins are involved in determining the efficiency of tombusvirus replication in the two subcellular membranes. Altogether...

‣ Essential Role of Rta in Lytic DNA Replication of Epstein-Barr Virus

El-Guindy, Ayman; Ghiassi-Nejad, Maryam; Golden, Sean; Delecluse, Henri-Jacques; Miller, George
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/2013 Português
Relevância na Pesquisa
36.45234%
Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in activation of viral DNA synthesis from the endogenous viral genome, a function that has not been established. Initially, we searched for a ZEBRA mutant that supports viral replication but not transcription. We found that Z(S186A), a mutant of ZEBRA unable to activate transcription of Rta or viral genes encoding replication proteins, is competent to bind to oriLyt and to function as an origin recognition protein. Ectopic expression of the six components of the EBV lytic replication machinery failed to rescue replication by Z(S186A). However, addition of Rta to Z(S186A) and the mixture of replication factors activated viral replication and late gene expression. Deletion mutagenesis of Rta indicated that the C-terminal 10 amino acids (aa) were essential for the function of Rta in replication. In vivo DNA binding studies revealed that Rta interacted with the enhancer region of oriLyt. In addition...

‣ Recruitment of Brd4 to the Human Papillomavirus Type 16 DNA Replication Complex Is Essential for Replication of Viral DNA

Wang, Xin; Helfer, Christine M.; Pancholi, Neha; Bradner, James E.; You, Jianxin
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /04/2013 Português
Relevância na Pesquisa
36.472856%
Replication of the human papillomavirus (HPV) DNA genome relies on viral factors E1 and E2 and the cellular replication machinery. Bromodomain-containing protein 4 (Brd4) interacts with viral E2 protein to mediate papillomavirus (PV) genome maintenance and viral transcription. However, the functional role of Brd4 in the HPV life cycle remains to be clearly defined. In this study, we provide the first look into the E2-Brd4 interaction in the presence of other important viral factors, such as the HPV16 E1 protein and the viral genome. We show that Brd4 is recruited to actively replicating HPV16 origin foci together with HPV16 E1, E2, and a number of the cellular replication factors: replication protein A70 (RPA70), replication factor C1 (RFC1), and DNA polymerase δ. Mutagenesis disrupting the E2-Brd4 interaction abolishes the formation of the HPV16 replication complex and impairs HPV16 DNA replication in cells. Brd4 was further demonstrated to be necessary for HPV16 viral DNA replication using a cell-free replication system in which depletion of Brd4 by small interfering RNA (siRNA) silencing leads to impaired HPV16 viral DNA replication and recombinant Brd4 protein is able to rescue viral DNA replication. In addition, releasing endogenous Brd4 from cellular chromatin by using the bromodomain inhibitor JQ1(+) enhances HPV16 DNA replication...

‣ Caractérisation de la fonction de la protéine cellulaire p80/UAF1 dans la réplication du génome du virus du papillome humain

Lehoux, Michaël
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
Português
Relevância na Pesquisa
36.507258%
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1...

‣ Identification of a new cell line permissive to porcine reproductive and resporatory syndrome virus replication

Jian-Jun, Jia
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
Português
Relevância na Pesquisa
36.466812%
Le syndrome reproducteur et respiratoire porcin (SRRP) est une des maladies les plus dévastatrices économiquement pour l'industrie mondiale du porc. L'agent étiologique du SRRP est le virus du SRRP (VSRRP) lequel est connu pour avoir une spécificité d'hôte très restreinte et pour sa transmission par voie aerosol. Les antigènes et les ARN du VSRRP ont été trouvés dans des cellules épithéliales du tractus respiratoire de porcs infectés par le virus. L’interaction entre les macrophages alvéolaires porcins (PAMs) et le VSRRP a été démontrée comme jouant un rôle important dans l’infection causée par le virus. Malgré cela, l’interaction prenant place entre les cellules épithéliales du tractus respiratoire porcin et le virus ne devrait pas être négligée. Jusqu’à présent, la réplication du VSRRP in vitro dans des cellules épithéliales du tractus respiratoire porcin n’a pas été conduite avec succès et les tentatives pour le faire ont échoué. Une nouvelle lignée de cellules épithéliales de poumon de porc (SJPL) est maintenant disponible et sera utilisée dans cette étude afin de déterminer si elle est permissive à la réplication du VSRRP et si elle peut être un modèle approprié pour l’étude de la pathogénèse virale du VSRRP. L’expérimentation a démontré que cette nouvelle lignée cellulaire était permissive à l’infection et à la réplication du VSRRP. Afin de corroborer ces résultats...

‣ Rôle de la structure du génome viral sur la réplication du virus de l’hépatite C.

Rance, Elodie
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Thèse ou Mémoire numérique / Electronic Thesis or Dissertation
Português
Relevância na Pesquisa
36.501736%
Le virus de l'hépatite C (VHC) touche 3% de la population mondiale et environ 30% des patients chroniquement infectés développeront une fibrose hépatique. Son génome est un ARN simple brin de polarité positive qui possède un cadre ouvert de lecture flanqué de deux régions non traduites hautement conservées. Différents facteurs peuvent influencer le cycle de réplication du VHC. Deux d’entre eux ont été étudiés dans cette thèse. Tout d'abord, nous nous sommes intéressés à l'effet des structures secondaires et tertiaires du génome sur la réplication du VHC. Les extrémités 5' et 3' du génome contiennent des structures ARN qui régulent la traduction et la réplication du VHC. Le 3'UTR est un élément structural très important pour la réplication virale. Cette région est constituée d’une région variable, d’une séquence poly(U/C) et d’un domaine hautement conservé appelé région X. Des études in vitro ont montré que le 3'UTR possède plusieurs structures ARN double brin. Cependant, les structures ARN telles qu'elles existent dans le 3'UTR dans un contexte de génome entier et dans des conditions biologiques étaient inconnues. Pour élucider cette question, nous avons développé une méthode in situ pour localiser les régions ARN simple brin et double brin dans le 3'UTR du génome du VHC. Comme prédit par les études antérieures...

‣ Chromatin Determinants of the Eukaryotic DNA Replication Program

Eaton, Matthew Lucas
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2011 Português
Relevância na Pesquisa
36.48315%

The accurate and timely replication of eukaryotic DNA during S-phase is of critical importance for the cell and for the inheritance of genetic information. Missteps in the replication program can activate cell cycle checkpoints or, worse, trigger the genomic instability and aneuploidy associated with diseases such as cancer. Eukaryotic DNA replication initiates asynchronously from hundreds to tens of thousands of replication origins spread across the genome. The origins are acted upon independently, but patterns emerge in the form of large-scale replication timing domains. Each of these origins must be localized, and the activation time determined by a system of signals that, though they have yet to be fully understood, are not dependent on the primary DNA sequence. This regulation of DNA replication has been shown to be extremely plastic, changing to fit the needs of cells in development or effected by replication stress.

We have investigated the role of chromatin in specifying the eukaryotic DNA replication program. Chromatin elements, including histone variants, histone modifications and nucleosome positioning, are an attractive candidate for DNA replication control, as they are not specified fully by sequence, and they can be modified to fit the unique needs of a cell without altering the DNA template. The origin recognition complex (ORC) specifies replication origin location by binding the DNA of origins. The S. cerevisiae ORC recognizes the ARS (autonomously replicating sequence) consensus sequence (ACS)...

‣ Re-replication in the Absence of Replication Licensing Mechanisms in Drosophila Melanogaster

Ding, Queying
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2011 Português
Relevância na Pesquisa
36.49159%

To ensure genomic integrity, the genome must be accurately duplicated once and only once per cell division. DNA replication is tightly regulated by replication licensing mechanisms which ensure that origins only initiate replication once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability.

DNA licensing involves two steps including the assembly of the pre-replicative compelx at origins in G1 and the activation of pre-RC in S-phase. Cdt1, also known as Double-parked (Dup) in Drosophila Menalogaster , is a key regulator of the assembly of pre-RC and its activity is strictly limited to G1 by multiple mechanisms including Cul4Ddb1 mediated proteolysis and inhibitory binding by geminin. Previous studies have indicated that when the balance between Cdt1 and geminin is disrupted, re-replication occurs but the genome is only partially re-replicated. The exact sequences that are re-replicated and the mechanisms contributing to partial re-replication are unknown. To address these two questions, I assayed the genomic consequences of deregulating the replication licensing mechanisms by either RNAi depletion of geminin or Dup over-expression in cultured Drosophila Kc167 cells. In agreement with previously reported re-replication studies...

‣ DNA Replication of the Male X Chromosome Is Influenced by the Dosage Compensation Complex in Drosophila melanogaster

DeNapoli, Leyna
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2013 Português
Relevância na Pesquisa
36.501736%

Abstract

DNA replication is an integral part of the cell cycle. Every time a cell divides, the entire genome has to be copied once and only once in a timely manner. In order to accomplish this, DNA replication begins at many points throughout the genome. These start sites are called origins of replication, and they are initiated in a temporal manner throughout S phase. How these origins are selected and regulated is poorly understood. Saccharomyces cerevisiae and Schizosaccharomyces pombe have autonomously replicating sequences (ARS) that can replicate plasmids extrachromosomally and function as origins in the genome. Metazoans, however, have shown no evidence of ARS activity.

DNA replication is a multistep process with several opportunities for regulation. Potential origins are marked with the origin recognition complex (ORC), a six subunit complex. In S. cerevisiae, ORC binds to the ARS consensus sequence (ACS), but no sequence specificity is seen in S. pombe or in metazoans. Therefore, factors other than sequence play a role in origin selection.

In G1, the pre-replicative (pre-RC) complex assembles at potential origins. This involves the recruitment of Cdc6 and Cdt1 to ORC, which then recruits MCM2-7 to the origin. In S phase...