Página 1 dos resultados de 1471 itens digitais encontrados em 0.034 segundos

‣ Reconhecimento de faces humanas usando redes neurais MLP; Human face recognition using MLP neural networks

Gaspar, Thiago Lombardi
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 15/02/2006 Português
Relevância na Pesquisa
97.95337%
O objetivo deste trabalho foi desenvolver um algoritmo baseado em redes neurais para o reconhecimento facial. O algoritmo contém dois módulos principais, um módulo para a extração de características e um módulo para o reconhecimento facial, sendo aplicado sobre imagens digitais nas quais a face foi previamente detectada. O método utilizado para a extração de características baseia-se na aplicação de assinaturas horizontais e verticais para localizar os componentes faciais (olhos e nariz) e definir a posição desses componentes. Como entrada foram utilizadas imagens faciais de três bancos distintos: PICS, ESSEX e AT&T. Para esse módulo, a média de acerto foi de 86.6%, para os três bancos de dados. No módulo de reconhecimento foi utilizada a arquitetura perceptron multicamadas (MLP), e para o treinamento dessa rede foi utilizado o algoritmo de aprendizagem backpropagation. As características faciais extraídas foram aplicadas nas entradas dessa rede neural, que realizou o reconhecimento da face. A rede conseguiu reconhecer 97% das imagens que foram identificadas como pertencendo ao banco de dados utilizado. Apesar dos resultados satisfatórios obtidos, constatou-se que essa rede não consegue separar adequadamente características faciais com valores muito próximos...

‣ Extração de características de imagens de faces humanas através de wavelets, PCA e IMPCA; Features extraction of human faces images through wavelets, PCA and IMPCA

Bianchi, Marcelo Franceschi de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 10/04/2006 Português
Relevância na Pesquisa
118.19388%
Reconhecimento de padrões em imagens é uma área de grande interesse no mundo científico. Os chamados métodos de extração de características, possuem as habilidades de extrair características das imagens e também de reduzir a dimensionalidade dos dados gerando assim o chamado vetor de características. Considerando uma imagem de consulta, o foco de um sistema de reconhecimento de imagens de faces humanas é pesquisar em um banco de imagens, a imagem mais similar à imagem de consulta, de acordo com um critério dado. Este trabalho de pesquisa foi direcionado para a geração de vetores de características para um sistema de reconhecimento de imagens, considerando bancos de imagens de faces humanas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor n-dimensional contendo esses valores. Essa nova representação da imagem propicia vantagens ao processo de reconhecimento de imagens, pela redução da dimensionalidade dos dados. Uma abordagem alternativa para caracterizar imagens para um sistema de reconhecimento de imagens de faces humanas é a transformação do domínio. A principal vantagem de uma transformação é a sua efetiva caracterização das propriedades locais da imagem. As wavelets diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente...

‣ Metodologia de extração automática de características da mão para a estimação da idade óssea utilizando redes neurais artificiais no processo de decisão ; Methodology of automatic extraction of hand characteristics for the estimation of the bone age using artificial neural nets in the decision process

Queiroz, Alini da Cruz
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 26/05/2006 Português
Relevância na Pesquisa
97.914375%
Este trabalho tem como objetivo principal apresentar uma metodologia para estimação da idade óssea baseada no método de Eklof & Ringertz utilizando redes neurais artificiais como classificador, com a finalidade de auxiliar o diagnóstico do radiologista e diminuir a dimensionalidade dos dados analisados pela rede neural, diminuindo a quantidade de centros de ossificação do método utilizado. A metodologia contém um processo automático de extração de características de imagens radiográficas da mão. Na etapa de classificação é utilizada a rede neural perceptron multicamadas, com o algoritmo de treinamento de Levenberg-Marquardt. As características extraídas da imagem são utilizadas como entrada para a rede neural, e os dados do Atlas de Eklof & Ringertz são utilizados como matriz de treinamento. Os resultados da etapa de classificação chegaram a uma taxa de 95% de acerto ao utilizar um centro de ossificação a menos que o método de Eklof & Ringertz simplificado; Grounded an Eklof & Ringertz’s method and using artificial neural networks as classifier, the main purpoise of this work is to present a methodology to reckon the bone age to the effect to help the radiologist’s diagnosis and to reduce the dimensionality of the data analyzed by neural network...

‣ Metodologia para extração de características invariantes à rotação em imagens de impressões digitais; Methodology for the extraction of features invariant to the rotation in fingerprint images

Mazetti, Cristina Mônica Dornelas
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 29/09/2006 Português
Relevância na Pesquisa
87.91338%
O objetivo deste trabalho é apresentar algoritmos aplicados para extração de características invariantes à rotação em imagens de impressões digitais. No pré-processamento da imagem utiliza-se detecção de bordas pelo detector de Canny tendo como resultado uma imagem binarizada e afinada. Na extração das minúcias a metodologia adotada é o número de cruzamentos (CN), que extrai os aspectos locais, tais como, as minúcias fim de linha e bifurcações. A direção das cristas locais não é utilizada porque nas imagens rotacionadas a condição de permanência das propriedades biométricas não são satisfeitas. A comparação das impressões digitais utiliza os vetores gerados pela extração de minúcias considerando a posição (x,y) da minúcia armazenada em um vetor por tipo de minúcia (um vetor para crista final e outro vetor para crista bifurcada) e calculando a distância Euclidiana dessa posição (x,y) ao centro de massa da distribuição de minúcias para cada tipo de minúcia. Assim, as duas imagens são similares quando a distância Euclidiana entre os vetores de cada imagem e por tipo de minúcia forem mínimas. São discutidas as limitações de outros trabalhos existentes envolvendo rotação, translação e distorção da imagem de impressão digital...

‣ Métodos adaptativos de segmentação aplicados à recuperação de imagens por conteúdo; Adaptative segmentation methods applied to Content-Based Image Retrieval

Balan, André Guilherme Ribeiro
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 14/05/2007 Português
Relevância na Pesquisa
87.92308%
A possibilidade de armazenamento de imagens no formato digital favoreceu a evolução de diversos ramos de atividades, especialmente as áreas de pesquisa e clínica médica. Ao mesmo tempo, o volume crescente de imagens armazenadas deu origem a um problema de relevância e complexidade consideráveis: a Recuperação de Imagens Baseada em Conteúdo, que, em outras palavras, diz respeito à capacidade de um sistema de armazenamento processar operações de consulta de imagens a partir de características visuais, extraídas automaticamente por meio de métodos computacionais. Das principais questões que constituem este problema, amplamente conhecido pelo termo CBIR - Content-Based Image Retrieval, fazem parte as seguintes: Como interpretar ou representar matematicamente o conteúdo de uma imagem? Quais medidas que podem caracterizar adequadamente este conteúdo? Como recuperar imagens de um grande repositório utilizando o conteúdo extraído? Como estabelecer um critério matemático de similaridade entre estas imagens? O trabalho desenvolvido e apresentado nesta tese busca, exatamente, responder perguntas deste tipo, especialmente para os domínios de imagens médicas e da biologia genética, onde a demanda por sistemas computacionais que incorporam técnicas CBIR é consideravelmente alta por diversos motivos. Motivos que vão desde a necessidade de se buscar informação visual que estava até então inacessível pela falta de anotações textuais...

‣ Análise da influência de funções de distância para o processamento de consultas por similaridade em recuperação de imagens por conteúdo; Analysis of the influence of distance functions to answer similarity queries in content-based image retrieval.

Bugatti, Pedro Henrique
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 16/04/2008 Português
Relevância na Pesquisa
87.8864%
A recuperação de imagens baseada em conteúdo (Content-based Image Retrieval - CBIR) embasa-se sobre dois aspectos primordiais, um extrator de características o qual deve prover as características intrínsecas mais significativas dos dados e uma função de distância a qual quantifica a similaridade entre tais dados. O grande desafio é justamente como alcançar a melhor integração entre estes dois aspectos chaves com intuito de obter maior precisão nas consultas por similaridade. Apesar de inúmeros esforços serem continuamente despendidos para o desenvolvimento de novas técnicas de extração de características, muito pouca atenção tem sido direcionada à importância de uma adequada associação entre a função de distância e os extratores de características. A presente Dissertação de Mestrado foi concebida com o intuito de preencher esta lacuna. Para tal, foi realizada a análise do comportamento de diferentes funções de distância com relação a tipos distintos de vetores de características. Os três principais tipos de características intrínsecas às imagens foram analisados, com respeito a distribuição de cores, textura e forma. Além disso, foram propostas duas novas técnicas para realização de seleção de características com o desígnio de obter melhorias em relação à precisão das consultas por similaridade. A primeira técnica emprega regras de associação estatísticas e alcançou um ganho de até 38% na precisão...

‣ Uma metodologia para extração de conhecimento em séries temporais por meio da identificação de motifs e da extração de características; A methodology to extract knowledge from time series using motif identification and feature extraction

Maletzke, André Gustavo
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 30/04/2009 Português
Relevância na Pesquisa
118.17041%
Mineração de dados tem sido cada vez mais aplicada em distintas áreas com o objetivo de extrair conhecimento interessante e relevante de grandes conjuntos de dados. Nesse contexto, aprendizado de máquina fornece alguns dos principais métodos utilizados em mineração de dados. Dentre os métodos empregados em aprendizado de máquina destacam-se os simbólicos que possuem como principal contribuição a interpretabilidade. Entretanto, os métodos de aprendizado de máquina tradicionais, como árvores e regras de decisão, não consideram a informação temporal presente nesses dados. Este trabalho propõe uma metodologia para extração de conhecimento de séries temporais por meio da extração de características e da identificação de motifs. Características e motifs são utilizados como atributos para a extração de conhecimento por métodos de aprendizado de máquina. Essa metodologia foi avaliada utilizando conjuntos de dados conhecidos na área. Foi realizada uma análise comparativa entre a metodologia e a aplicação direta de métodos de aprendizado de máquina sobre as séries temporais. Os resultados mostram que existe diferença estatística significativa para a maioria dos conjuntos de dados avaliados. Finalmente...

‣ Sistema de visão artificial para identificação do estado nutricional de plantas; Artificial vision system for plant nutricional state identification

Zúñiga, Alvaro Manuel Gómez
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 29/03/2012 Português
Relevância na Pesquisa
87.84434%
A avaliação do estado nutricional das plantas de milho usualmente é feita através de análises químicas ou pela diagnose visual das folhas da planta, esta última, sujeita a erros de interpretação já que a ausência de algum nutriente na planta gera um padrão de mudança específico na superfície da folha que depende do nível de ausência do nutriente. As dificuldades que apresentam neste processo e sua importância na agricultura, criam a necessidade de pesquisar sistemas automáticos para a avaliação do estado nutricional de plantas. Desta forma, este mestrado teve como objetivo principal o desenvolvimento de um sistema de visão artificial para verificar a possibilidade de identificação de níveis dos macronutrientes Cálcio, Enxofre, Magnésio, Nitrogênio e Potássio em plantas de milho através da análise da superfície das folhas usando métodos de visão computacional. Este projeto realiza uma revisão bibliográfica do estado da arte dos métodos de extração de características de cor, textura em escala de cinza e textura colorida utilizadas em processamento de imagens. A alta similaridade entre os sintomas produzidos pelas deficiências e a pouca similaridade entre amostras de uma mesma deficiência motivou o desenvolvimento de novos métodos de extração de características que pudessem fornecer dados necessários para uma correta separação entre as classes. Os resultados obtidos demonstraram que o sistema desenvolvido possibilita a predição de deficiências nutricionais em estágios iniciais do crescimento da planta usando unicamente a textura da superfície da folha como fonte de informação; The evaluation of the nutritional status of corn plants is usually done through chemical analysis or by visual diagnosis of the plant leaves. Visual diagnosis is subject to misinterpretation as the lack of some nutrient in the plant generates a specific pattern of change in the leaf surface that depends on the degree on which the nutrient is absent on the plant. The difficulties present in this process and its importance in agriculture creates the necessity to search automated systems for the assessment of nutritional status of plants. Thus...

‣ Mineração de imagens médicas utilizando características de forma; Medical image supported by shape features

Costa, Alceu Ferraz
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 10/04/2012 Português
Relevância na Pesquisa
88.09994%
Bases de imagens armazenadas em sistemas computacionais da área médica correspondem a uma valiosa fonte de conhecimento. Assim, a mineração de imagens pode ser aplicada para extrair conhecimento destas bases com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Sistemas CAD apoiados por mineração de imagens tipicamente realizam a extração de características visuais relevantes das imagens. Essas características são organizadas na forma de vetores de características que representam as imagens e são utilizados como entrada para classificadores. Devido ao problema conhecido como lacuna semântica, que corresponde à diferença entre a percepção da imagem pelo especialista médico e suas características automaticamente extraídas, um aspecto desafiador do CAD é a obtenção de um conjunto de características que seja capaz de representar de maneira sucinta e eficiente o conteúdo visual de imagens médicas. Foi desenvolvido neste trabalho o extrator de características FFS (Fast Fractal Stack) que realiza a extração de características de forma, que é um atributo visual que aproxima a semântica esperada pelo ser humano. Adicionalmente, foi desenvolvido o algoritmo de classificação Concept...

‣ Seleção supervisionada de características por ranking para processar consultas por similaridade em imagens médicas; Supervised feature selection by ranking to process similarity queries in medical images

Mamani, Gabriel Efrain Humpire
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 05/12/2012 Português
Relevância na Pesquisa
97.93319%
Obter uma representação sucinta e representativa de imagens médicas é um desafio que tem sido perseguido por pesquisadores da área de processamento de imagens médicas com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Os sistemas CAD utilizam algoritmos de extração de características para representar imagens, assim, diferentes extratores podem ser avaliados. No entanto, as imagens médicas contêm estruturas internas que são importantes para a identificação de tecidos, órgãos, malformações ou doenças. É usual que um grande número de características sejam extraídas das imagens, porém esse fato que poderia ser benéfico, pode na realidade prejudicar o processo de indexação e recuperação das imagens com problemas como a maldição da dimensionalidade. Assim, precisa-se selecionar as características mais relevantes para tornar o processo mais eficiente e eficaz. Esse trabalho desenvolveu o método de seleção supervisionada de características FSCoMS (Feature Selection based on Compactness Measure from Scatterplots) para obter o ranking das características, contemplando assim, o que é necessário para o tipo de imagens médicas sob análise. Dessa forma, produziu-se vetores de características mais enxutos e eficientes para responder consultas por similaridade. Adicionalmente...

‣ Extração de características combinadas com árvore de decisão para detecção e classificação dos distúrbios de qualidade da energia elétrica; Features extraction combined with decision tree for detection and classification of disorders of power quality

Borges, Fábbio Anderson Silva
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 11/07/2013 Português
Relevância na Pesquisa
107.90805%
Este trabalho apresenta uma metodologia de detecção e classificação de distúrbios relacionados à qualidade da energia elétrica. A detecção é feita utilizando-se somente uma regra para inferir na presença ou não do distúrbio em uma janela analisada. Para a classificação é proposto um método baseado em árvore de decisão. A árvore recebe como entrada as características do sinal extraídas tanto no domínio do tempo como no domínio da frequência, sendo a última obtida pela Transformada de Fourier. Destaca-se que toda a metodologia de extração de características foi idealizada como tentativa de se reduzir ao máximo o esforço computacional das tarefas de detecção e classificação de distúrbios. Em suma, verifica-se que os resultados obtidos são satisfatórios para a proposta desta pesquisa.; This work presents a methodology for detection and classification of disturbance related to the electric power quality. The detection is performed using only one rule to infer in the presence or not of the disturbance in a window analyzed. For the classification is proposed a method based on decision tree. The tree receives as input features of the extracted signal both in time domain and in the frequency domain, being the last obtained by Fourier transform. It is emphasized that all the features extraction methodology was idealized as an attempt to reduce to the maximum the computational effort for the tasks of detection and classification of disturbances. In short...

‣ Pesquisa de similaridades em imagens mamográficas com base na extração de características.; Search for similarities in mammographic images based feature extraction.

Santos, Jamilson Bispo dos
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 25/04/2013 Português
Relevância na Pesquisa
97.52727%
Este trabalho apresenta uma estratégia computacional para a consolidação do treinamento dos radiologistas residentes por meio da classificação de imagens mamográficas pela similaridade, analisando informações dos laudos realizados por médicos experientes, obtendo os atributos extraídos das imagens médicas. Para a descoberta de padrões que caracterizam a similaridade aplicam-se técnicas de processamento digital de imagens e de mineração de dados nas imagens mamográficas. O reconhecimento de padrões tem como objetivo realizar a classificação de determinados conjuntos de imagens em classes. A classificação dos achados mamográficos é realizada utilizando Redes Neurais Artificiais, por meio do classificador Self-Organizing Map (SOM). O presente trabalho utiliza a recuperação de imagens por conteúdo (CBIR- Content-Based Image Retrieval), considerando a similaridade em relação a uma imagem previamente selecionada para o treinamento. As imagens são classificadas de acordo com a similaridade, analisando-se informações dos atributos extraídos das imagens e dos laudos. A identificação da similaridade é obtida pela extração de características, com a utilização da transformada de wavelets.; This work presents a computational strategy to consolidate the training of residents radiologists through the classification of mammographic images by similarity...

‣ Reconhecimento de padrões de nutrição para nitrogênio e potássio em híbridos de milho por análise de imagens digitais; Recognition of nutritional patterns to nitrogen and potassium in maize hybrids by analyzing digital images

Silva, Fernanda de Fátima da
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 30/04/2015 Português
Relevância na Pesquisa
87.92451%
A adubação e a utilização de cultivares mais produtivos consistem em tecnologias essenciais para melhorar a produtividade e a sustentabilidade da cultura do milho (Zea mays L.). A análise de imagens digitais é uma tecnologia utilizada para a identificação de deficiência nutricional em folhas de milho em estádios iniciais de desenvolvimento, já que, nos métodos atuais, é muito difícil a correção do nutriente deficiente no mesmo ciclo da cultura. O objetivo deste trabalho foi avaliar as características nutricionais e produtivas, bem como verificar métodos de extração de características de imagens digitais para diagnosticar sintomas de deficiência de nitrogênio (N) e potássio (K) em híbridos de milho, cultivados em casa de vegetação, com deficiência induzida em nitrogênio (N) ou potássio (K); e posteriormente no campo. O experimento foi independente para cada elemento e conduzido em 2 etapas: 1º) casa de vegetação sob cultivo hidropônico, com tratamentos em fatorial 4 (doses) x 3 (híbridos) e 4 repetições, sendo 4 doses: 5, 20%, 100% e 200% da dose completa; e 2º) campo, em blocos ao acaso em fatorial 4x3 (4 doses e 3 híbridos) e 4 blocos, sendo as doses de adubação: omissão individual e completa (0%) de N ou K...

‣ Técnicas de extração de características para cenários com multimodalidade intraclasse

Rodrigues da Silva Júnior, Elias; Darmiton da Cunha Cavalcanti, George (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
98.35909%
Multimodalidade intraclasse é frequente em problemas de classificação e eles conduzem a indesejadas projeções quando aplicados à técnicas lineares de extração de características. As clássicas técnicas lineares de extração de características, que constroem suas soluções baseadas em métricas globais do conjunto de padrões, não podem perceber a multimodalidade dentro da classe, logo, elas criam projeções que não preservam a estrutura multimodal após a redução da dimensionalidade, o que pode ser uma pobre ou indesejada representação da distribuição original dos padrões. Na literatura são encontradas técnicas lineares de extração de características que se preocupam com a manutenção da estrutura multimodal da distribuição dos padrões após a redução da dimensionalidade. Todavia, essas técnicas calculam sua solução tomando a influência de cada classe na percepção da multimodalidade em conjunto, o que pode acarretar em influência negativa de uma classe sobre outra no que diz respeito à preservação da estrutura multimodal do conjunto de padrões após a redução da dimensionalidade. Para melhor tratar problemas com multimodalidade intraclasse, são apresentadas neste trabalho novas técnicas lineares de extração de características...

‣ WhatMatter: extração e visualização de características em opiniões sobre serviços

Borges Alencar Siqueira, Henrique; de Almeida Barros, Flávia (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
97.91355%
O número crescente de blogs, foruns e redes sociais na Web aumentou drasticamente a quantidade de textos contendo não apenas fatos mas também opiniões. Com a popularização do E-commerce, um grande número destas opiniões são resenhas de consumidores sobre produtos e serviços. Esta tendência motivou diversas pesquisas e aplicações comerciais buscando a análise automática das opiniões disponíveis. Claramente, esta informação é crucial para novos consumidores, gerentes e empresários que gostariam de tomar suas decisões baseadas no que outras pessoas opiniaram. Considerando as opiniões dadas sobre serviços como lojas e hotéis, é particularmente dificil identificar de maneira automatizada as características (eg. atendimento, entrega, localização, etc.) que influiram na escolha e na satisfação do consumidor. Neste trabalho apresentamos o WhatMatter, um sistema de Análise de Sentimentos que realiza a identificação, extração, classificação e sumário de características em opiniões através de um processo automatizado inovador. Este processo é formado por cinco passos principais: pré-processamento, identificação de substantivos mais freqüentes, identificação dos substantivos relevantes...

‣ Ambiente computacional para verificação de assinaturas invariantes ao tamanho em tempo real

Sineco Almeida Araújo, Rodrigo; Costa de Barros Carvalho Filho, Edson (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
97.73008%
Uma grande quantidade de estudos relacionados a sistemas on-line de verificação vem sendo conduzida por pesquisadores nos últimos anos. No entanto, investigações a respeito da influência do tamanho das assinaturas no seu processo de formação são escassas. De fato, este tipo de análise para sistemas de verificação on-line está sendo feito pela primeira vez. Nesta dissertação, com o objetivo de investigar esta influência, uma base de dados contendo assinaturas com três tamanhos diferentes foi criada. Os resultados obtidos mostraram que assinaturas de tamanhos diferentes são estatisticamente diferentes e podem influenciar as técnicas de extração de características, o que, por sua vez, influenciam as taxas de acertos dos sistemas de verificação. Portanto, uma atenção especial deve ser tomada na implementação de aplicações globais que utilizam bases de dados com assinaturas de diferentes tamanhos. Nos experimentos realizados, as assinaturas médias, no melhor dos casos, obtiveram um erro médio de classificação de 1,96%, enquanto que as assinaturas pequenas e grandes, após um processo de seleção de característica, obtiveram um erro médio de 4,04% e 4,25% respectivamente. Através de uma seleção local de características...

‣ Análise e classificação de imagens de lesões da pele por atributos de cor, forma e textura utilizando máquina de vetor de suporte

Soares, Heliana Bezerra
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações
Tipo: Tese de Doutorado Formato: application/pdf
Português
Relevância na Pesquisa
87.92415%
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover...

‣ Sistema inteligente para diagnóstico de patologias na laringe utilizando máquinas de vetor de suporte

Almeida, Náthalee Cavalcanti de
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Engenharia Elétrica; Automação e Sistemas; Engenharia de Computação; Telecomunicações
Tipo: Tese de Doutorado Formato: application/pdf
Português
Relevância na Pesquisa
97.53872%
The human voice is an important communication tool and any disorder of the voice can have profound implications for social and professional life of an individual. Techniques of digital signal processing have been used by acoustic analysis of vocal disorders caused by pathologies in the larynx, due to its simplicity and noninvasive nature. This work deals with the acoustic analysis of voice signals affected by pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The purpose of this work is to develop a classification system of voices to help pre-diagnosis of pathologies in the larynx, as well as monitoring pharmacological treatments and after surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients (MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT) are applied to extract relevant characteristics of the voice signal. For the classification task is used the Support Vector Machine (SVM), which aims to build optimal hyperplanes that maximize the margin of separation between the classes involved. The hyperplane generated is determined by the support vectors, which are subsets of points in these classes. According to the database used in this work, the results showed a good performance...

‣ Métodos para aproximação poligonal e o desenvolvimento de extratores de características de forma a partir da função tangencial

Carvalho, Juliano Daloia de
Fonte: Universidade Federal de Uberlândia Publicador: Universidade Federal de Uberlândia
Tipo: Dissertação
Português
Relevância na Pesquisa
97.53116%
Contornos obtidos manualmente podem conter ruídos e artefatos oriundos de tremores da mão bem como contornos obtidos automaticamente podem os conter dado a problemas na etapa de segmentação. Para melhorar os resultados da etapa de representação e descrição, são necessários métodos capazes de reduzir a influência dos ruídos e artefatos enquanto mantém características relevantes da forma. Métodos de aproximação poligonal têm como objetivo a remoção de ruídos e artefatos presentes nos contornos e a melhor representação da forma com o menor número possível de segmentos de retas. Nesta disserta ção são propostos dois métodos de aproximação poligonal, um aplicado diretamente no contorno e outro que é obtido a partir da função tangencial do contorno original. Ambos os métodos fazem uso dos parâmetros Smin e µmax para inferirem sobre a permanência ou remoção de um dado segmento. Com a utilização destes parâmetros os métodos podem ser configurados para serem utilizados em vários tipos de aplicações. Ambos os métodos mostram-se eficientes na remoção de ruídos e artefatos, enquanto que características relevantes para etapas de pós-processamento são mantidas. Sistemas de apoio ao diagnóstico por imagens e de recuperação de imagens por conte údo fazem uso de métodos descritores de forma para que seja possível inferir sobre características presentes em um dado contorno ou ainda como base para medir a dissimilaridade entre contornos. Métodos descritores de características são capazes de representar um contorno por um número...

‣ Identificação automatizada de espécies de abelhas através de imagens de asas.; Automated bee species identification through wing images.

Silva, Felipe Leno da
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 19/02/2015 Português
Relevância na Pesquisa
88.07225%
Diversas pesquisas focam no estudo e conservação das abelhas, em grande parte por sua importância para a agricultura. Entretanto, a identicação de espécies de abelhas vem sendo um impedimento para a condução de novas pesquisas, já que demanda tempo e um conhecimento muito especializado. Apesar de existirem diversos métodos para realizar esta tarefa, muitos deles são excessivamente custosos, restringindo sua aplicabilidade. Por serem facilmente acessíveis, as asas das abelhas vêm sendo amplamente utilizadas para a extração de características, já que é possível aplicar técnicas morfométricas utilizando apenas uma foto da asa. Como a medição manual de diversas características é tediosa e propensa a erros, sistemas foram desenvolvidos com este propósito. Entretanto, os sistemas ainda possuem limitações e não há um estudo voltado às técnicas de classificação que podem ser utilizadas para este m. Esta pesquisa visa avaliar as técnicas de extração de características e classificação de modo a determinar o conjunto de técnicas mais apropriado para a discriminação de espécies de abelhas. Nesta pesquisa foi demonstrado que o uso de uma conjunção de características morfométricas e fotométricas obtêm melhores resultados que o uso de somente características morfométricas. Também foram analisados os melhores algoritmos de classificação tanto usando somente características morfométricas...