Página 1 dos resultados de 86 itens digitais encontrados em 0.001 segundos

‣ Glutaminólise em astrocitomas; Glutaminolysis in astrocytomas

Alves, Maria José Ferreira
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 28/08/2014 Português
Relevância na Pesquisa
27.769673%
O metabolismo da glutamina (Gln) é alvo de atenções recentes para a compreensão da reprogramação metabólica para o suprimento energético das células tumorais em proliferação e para o desenvolvimento de novas estratégias terapêuticas em câncer. Tanto a absorção de glutamina quanto a taxa de glutaminólise, o catabolismo da Gln para gerar adenosina trifosfato (ATP) e lactato na mitocôndria estão aumentados em diferentes tumores. A Gln e glicose participam do processo da proliferação de células tumorais tanto na produção de (ATP) como no fornecimento de produtos intermediários utilizados na síntese de macromoléculas e Gln é utilizado para anaplerose do ciclo do ácido tricarboxílico. Nesse estudo, nosso objetivo foi analisar a expressão dos genes envolvidos na glutaminólise: ASCT2, LAT1, GLS, GLSISO1, GLSISO2, GLS2, GOT1, GOT2, GLUD1 e GPT2 em astrocitomas de diferentes graus de malignidade (AGI-AGIV), classificados de acordo com a Organização Mundial de Saúde (OMS), em relação às expressões em tecidos cerebrais não neoplásicos e correlacionar os níveis de expressão destes genes aos dados clínicos. PCR quantitativo em tempo real (qRT-PCR) foi realizado em 175 amostras, sendo 22 dentre estes de tecidos não neoplásicos. Observou-se tempo de sobrevida menor entre os pacientes com hiperexpressão de LAT1...

‣ Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells.

Board, M; Humm, S; Newsholme, E A
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 15/01/1990 Português
Relevância na Pesquisa
27.25036%
1. Maximal activities of some key enzymes of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and glutaminolysis were measured in homogenates from a variety of normal, neoplastic and suppressed cells. 2. The relative activities of hexokinase and 6-phosphofructokinase suggest that, particularly in neoplastic cells, in which the capacity for glucose transport is high, hexokinase could approach saturation in respect to intracellular glucose; consequently, hexokinase and phosphofructokinase could play an important role in the regulation of glycolytic flux in these cells. 3. The activity of pyruvate kinase is considerably higher in tumorigenic cells than in non-tumorigenic cells and higher in metastatic cells than in tumorigenic cells: for non-tumorigenic cells the activities range from 28.4 to 574, for tumorigenic cells from 899 to 1280, and for metastatic cells from 1590 to 1627 nmol/min per mg of protein. 4. The ratio of pyruvate kinase activity to 2 x phosphofructokinase activity is very high in neoplastic cells. The mean is 22.4 for neoplastic cells, whereas for muscle from 60 different animals it is only 3.8. 5. Both citrate synthase and isocitrate dehydrogenase activities are present in non-neoplastic and neoplastic cells...

‣ Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex.

Mazurek, S; Zwerschke, W; Jansen-Dürr, P; Eigenbrodt, E
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 15/05/2001 Português
Relevância na Pesquisa
27.769673%
Proliferating and tumour cells express the glycolytic isoenzyme, pyruvate kinase type M2 (M2-PK), which occurs in a highly active tetrameric form and in a dimeric form with low affinity for phosphoenolpyruvate. The switch between the two forms regulates glycolytic phosphometabolite pools and the interaction between glycolysis and glutaminolysis. In the present study, we show the effects of oncoprotein E7 of the human papilloma virus (HPV)-16 (E7)-transformation on two NIH 3T3 cell strains with different metabolic characteristics. E7-transformation of the high glycolytic NIH 3T3 cell strain led to a shift of M2-PK to the dimeric form and, in consequence, to a decrease in the cellular pyruvate kinase mass-action ratio, the glycolytic flux rate and the (ATP+GTP)/(UTP+CTP) ratio, as well as to an increase in fructose 1,6-bisphosphate (FBP) levels, glutamine consumption and cell proliferation. The low glycolytic NIH 3T3 cell strain is characterized by high pyruvate and glutamine consumption rates and by an intrinsically large amount of the dimeric form of M2-PK, which is correlated with high FBP levels, a low (ATP+GTP)/(CTP+UTP) ratio and a high proliferation rate. E7-transformation of this cell strain led to an alteration in the glycolytic-enzyme complex that correlates with an increase in pyruvate and glutamine consumption and a slight increase in the flow of glucose to lactate. The association of phosphoglyceromutase within the glycolytic-enzyme complex led to an increase of glucose and serine consumption and a disruption of the linkage between glucose consumption and glutaminolysis. In both NIH 3T3 cell lines...

‣ Elimination of KATP Channels in Mouse Islets Results in Elevated [U-13C]Glucose Metabolism, Glutaminolysis, and Pyruvate Cycling but a Decreased γ-Aminobutyric Acid Shunt*

Li, Changhong; Nissim, Itzhak; Chen, Pan; Buettger, Carol; Najafi, Habiba; Daikhin, Yevgeny; Nissim, Ilana; Collins, Heather W.; Yudkoff, Marc; Stanley, Charles A.; Matschinsky, Franz M.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Publicado em 20/06/2008 Português
Relevância na Pesquisa
27.25036%
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1-/-) and control mouse islets with d-[U-13C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and γ-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1-/- islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-β-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1-/- and glyburide-treated SUR1+/+ islets. Glucose oxidation and pyruvate cycling was increased in SUR1-/- islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1...

‣ Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line*S⃞

Yoo, Hyuntae; Antoniewicz, Maciek R.; Stephanopoulos, Gregory; Kelleher, Joanne K.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Publicado em 25/07/2008 Português
Relevância na Pesquisa
17.250359%
We previously reported that glutamine was a major source of carbon for de novo fatty acid synthesis in a brown adipocyte cell line. The pathway for fatty acid synthesis from glutamine may follow either of two distinct pathways after it enters the citric acid cycle. The glutaminolysis pathway follows the citric acid cycle, whereas the reductive carboxylation pathway travels in reverse of the citric acid cycle from α-ketoglutarate to citrate. To quantify fluxes in these pathways we incubated brown adipocyte cells in [U-13C]glutamine or [5-13C]glutamine and analyzed the mass isotopomer distribution of key metabolites using models that fit the isotopomer distribution to fluxes. We also investigated inhibitors of NADP-dependent isocitrate dehydrogenase and mitochondrial citrate export. The results indicated that one third of glutamine entering the citric acid cycle travels to citrate via reductive carboxylation while the remainder is oxidized through succinate. The reductive carboxylation flux accounted for 90% of all flux of glutamine to lipid. The inhibitor studies were compatible with reductive carboxylation flux through mitochondrial isocitrate dehydrogenase. Total cell citrate and α-ketoglutarate were near isotopic equilibrium as expected if rapid cycling exists between these compounds involving the mitochondrial membrane NAD/NADP transhydrogenase. Taken together...

‣ Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction

Wise, David R.; DeBerardinis, Ralph J.; Mancuso, Anthony; Sayed, Nabil; Zhang, Xiao-Yong; Pfeiffer, Harla K.; Nissim, Ilana; Daikhin, Evgueni; Yudkoff, Marc; McMahon, Steven B.; Thompson, Craig B.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
27.769673%
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.

‣ Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes

Colombo, Sergio L.; Palacios-Callender, Miriam; Frakich, Nanci; De Leon, Joel; Schmitt, Christoph A.; Boorn, Leanne; Davis, Nicola; Moncada, Salvador
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
27.25036%
Cell proliferation is accompanied by an increase in the utilization of glucose and glutamine. The proliferative response is dependent on a decrease in the activity of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-Cdh1 which controls G1-to-S-phase transition by targeting degradation motifs, notably the KEN box. This occurs not only in cell cycle proteins but also in the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), as we have recently demonstrated in cells in culture. We now show that APC/C-Cdh1 controls the proliferative response of human T lymphocytes. Moreover, we have found that glutaminase 1 is a substrate for this ubiquitin ligase and appears at the same time as PFKFB3 in proliferating T lymphocytes. Glutaminase 1 is the first enzyme in glutaminolysis, which converts glutamine to lactate, yielding intermediates for cell proliferation. Thus APC/C-Cdh1 is responsible for the provision not only of glucose but also of glutamine and, as such, accounts for the critical step that links the cell cycle with the metabolic substrates essential for its progression.

‣ Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells

Meng, Meng; Chen, Shuyang; Lao, Taotao; Liang, Dongming; Sang, Nianli
Fonte: Landes Bioscience Publicador: Landes Bioscience
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
27.90369%
Glutaminolysis and the Warburg effect are the two most noticeable metabolic features of tumor cells, whereas their biological significance in cell proliferation remains elusive. A widely accepted current hypothesis is that tumor cells use glutamine as a preferred carbon source for energy and reducing power, which has been used to explain both glutaminolysis and the Warburg effect. Here we provide evidence to show that supplying nitrogen, not the carbon skeleton, underlies the major biological importance of glutaminolysis for proliferating cells. We show that alternative nitrogen supplying mechanisms rescue cell proliferation in glutamine-free media. Particularly, we show that ammonia is sufficient to maintain a long-term survival and proliferation of Hep3B in glutamine-free media. We also observed that nitrogen source restriction repressed carbon metabolic pathways, including glucose utilization. Based on these new observations and metabolic pathways well-established in published literature, we propose an alternative model that cellular demand for glutamate is a key molecule in nitrogen anabolism, which is the driving force of glutaminolysis in proliferating cells. Our model suggests that the Warburg effect may be a metabolic consequence secondary to the nitrogen anabolism.

‣ Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

Dengler, Michael A.; Staiger, Annette M.; Gutekunst, Matthias; Hofmann, Ute; Doszczak, Malgorzata; Scheurich, Peter; Schwab, Matthias; Aulitzky, Walter E.; van der Kuip, Heiko
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 20/09/2011 Português
Relevância na Pesquisa
17.250359%
In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death.

‣ The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation

Wang, Ruoning; Dillon, Christopher P.; Shi, Lewis Zhichang.; Milasta, Sandra; Carter, Robert; Finkelstein, David; McCormick, Laura L.; Fitzgerald, Patrick; Chi, Hongbo; Munger, Joshua; Green, Douglas R.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 23/12/2011 Português
Relevância na Pesquisa
17.250359%
To fulfill the bioenergetic and biosynthetic demand of proliferation, T cells reprogram their metabolic pathways from fatty acid β-oxidation and pyruvate oxidation via the TCA cycle to the glycolytic, pentose-phosphate, and glutaminolytic pathways. Two of the top-ranked candidate transcription factors potentially responsible for the activation-induced T cell metabolic transcriptome, HIF1α and Myc, were induced upon T cell activation, but only the acute deletion of Myc markedly inhibited activation-induced glycolysis and glutaminolysis in T cells. Glutamine deprivation compromised activation-induced T cell growth and proliferation, and this was partially replaced by nucleotides and polyamines, implicating glutamine as an important source for biosynthetic precursors in active T cells. Metabolic tracer analysis revealed a Myc-dependent metabolic pathway linking glutaminolysis to the biosynthesis of polyamines. Therefore, a Myc-dependent global metabolic transcriptome drives metabolic reprogramming in activated, primary T lymphocytes. This may represent a general mechanism for metabolic reprogramming under patho-physiological conditions.

‣ The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

Smolková, Katarína; Ježek, Petr
Fonte: Hindawi Publishing Corporation Publicador: Hindawi Publishing Corporation
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
17.250359%
Isocitrate dehydrogenase 2 (IDH2) is located in the mitochondrial matrix. IDH2 acts in the forward Krebs cycle as an NADP+-consuming enzyme, providing NADPH for maintenance of the reduced glutathione and peroxiredoxin systems and for self-maintenance by reactivation of cystine-inactivated IDH2 by glutaredoxin 2. In highly respiring cells, the resulting NAD+ accumulation then induces sirtuin-3-mediated activating IDH2 deacetylation, thus increasing its protective function. Reductive carboxylation of 2-oxoglutarate by IDH2 (in the reverse Krebs cycle direction), which consumes NADPH, may follow glutaminolysis of glutamine to 2-oxoglutarate in cancer cells. When the reverse aconitase reaction and citrate efflux are added, this overall “anoxic” glutaminolysis mode may help highly malignant tumors survive aglycemia during hypoxia. Intermittent glycolysis would hypothetically be required to provide ATP. When oxidative phosphorylation is dormant, this mode causes substantial oxidative stress. Arg172 mutants of human IDH2—frequently found with similar mutants of cytosolic IDH1 in grade 2 and 3 gliomas, secondary glioblastomas, and acute myeloid leukemia—catalyze reductive carboxylation of 2-oxoglutarate and reduction to D-2-hydroxyglutarate...

‣ Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth

van den Heuvel, A. Pieter J.; Jing, Junping; Wooster, Richard F.; Bachman, Kurtis E.
Fonte: Landes Bioscience Publicador: Landes Bioscience
Tipo: Artigo de Revista Científica
Publicado em 01/10/2012 Português
Relevância na Pesquisa
17.571838%
One of the hallmarks of cancer is metabolic deregulation. Many tumors display increased glucose uptake and breakdown through the process of aerobic glycolysis, also known as the Warburg effect. Less studied in cancer development and progression is the importance of the glutamine (Gln) pathway, which provides cells with a variety of essential products to sustain cell proliferation, such as ATP and macromolecules for biosynthesis. To this end Gln dependency was assessed in a panel of non-small cell lung cancer lines (NSCLC). Gln was found to be essential for the growth of cells with high rates of glutaminolysis, and after exploring multiple genes in the Gln pathway, GLS1 was found to be the key enzyme associated with this dependence. This dependence was confirmed by observing the rescue of decreased growth by exogenous addition of downstream metabolites of glutaminolysis. Expression of the GLS1 splice variant KGA was found to be decreased in tumors compared with normal lung tissue. Transient knock down of GLS1 splice variants indicated that loss of GAC had the most detrimental effect on cancer cell growth. In conclusion, NSCLC cell lines depend on Gln for glutaminolysis to a varying degree, in which the GLS1 splice variant GAC plays an essential role and is a potential target for cancer metabolism-directed therapy.

‣ NRF2 and p53: Januses in cancer?

Rotblat, Barak; Melino, Gerry; Knight, Richard A.
Fonte: Impact Journals LLC Publicador: Impact Journals LLC
Tipo: Artigo de Revista Científica
Publicado em 19/11/2012 Português
Relevância na Pesquisa
17.250359%
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and positively controls the expression of a battery of anti-oxidative stress response proteins and enzymes implicated in detoxification and glutathione generation. Although its detoxifying activity is important in cancer prevention, it has recently been shown that cancer cells also exploit its protective functions to thrive and resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and glutaminolysis, which promotes purine synthesis for supporting rapid proliferation and glutathione for providing anti-oxidative stress protection. Evidence obtained from cancer patients and cell lines suggest that NRF2 is highly active in a variety of human cancers and is associated with aggressiveness. p53 is a tumor suppressor that also promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we will discuss the similarities between NRF2 and p53 and review evidence that p53 might be exploited by cancer cells to gain protection against oxidative stress, as is the case for NRF2. We discuss findings of co-regulation between these transcription factors and propose possible therapeutic strategies that can be used for treatment of cancers that harbor WT p53 and express high levels of NRF2.

‣ Expression of metabolism-related proteins in triple-negative breast cancer

Kim, Min-Ju; Kim, Do-Hee; Jung, Woo-Hee; Koo, Ja-Seung
Fonte: e-Century Publishing Corporation Publicador: e-Century Publishing Corporation
Tipo: Artigo de Revista Científica
Publicado em 15/12/2013 Português
Relevância na Pesquisa
18.000479%
To investigate the dominant metabolic type of triple-negative breast cancer (TNBC) and evaluate its clinical implication through analysis of protein expression related to glycolysis, glutaminolysis, and mitochondrial oxidative phosphorylation. Tissue samples from 129 patients with TNBC who underwent mastectomy due to invasive breast cancer from 2000 to 2005 were prepared for tissue microarray. By immunohistochemical staining of the tissue microarrays, the markers of glycolysis-related proteins (Glut-1, CAIX, MCT4), glutaminolysis-related proteins (GLS1, GDH, ASCT2), and mitochondrial enzymes (ATP synthase, SDHA and SDHB) were analyzed. Based on the results, the metabolic phenotypes were defined based on positivity for more than two of three markers for each phenotype as follows: glycolysis type (Glut-1, CAIX and MCT4), glutaminolysis type (GLS1, GDH and ASCT2) and mitochondrial type (ATP synthase, SDHA and SDHB). The percentages of samples with metabolic phenotypes of tumor and stroma of TNBC were as follows: for tumor, mitochondrial type (85.3%) > glutaminolysis type (67.4%) > glycolysis type (63.0%); and for stroma, glutaminolysis type (37.2%) > glycolysis type (16.3%) > mitochondrial type (14.0%). The most common metabolic phenotype of TNBC was glycolysis type for basal-like type and non-glycolysis type for non-basal-like type (p=0.047). The correlation between glutaminolysis and mitochondrial type was statistically significant in both tumor and stroma (p<0.001). In conclusion...

‣ Stress eating and tuning out: Cancer cells re-wire metabolism to counter stress

Stine, Zachary E.; Dang, Chi V.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
17.571838%
Cancer cells reprogram metabolism to maintain rapid proliferation under often stressful conditions. Glycolysis and glutaminolysis are two central pathways that fuel cancer metabolism. Allosteric regulation and metabolite driven post-translational modifications of key metabolic enzymes allow cancer cells glycolysis and glutaminolysis to respond to changes in nutrient availability and the tumor microenvironment. While increased aerobic glycolysis (the Warburg effect) has been a noted part of cancer metabolism for over 80 years, recent work has shown that the elevated levels of glycolytic intermediates are critical to cancer growth and metabolism due to their ability to feed into the anabolic pathways branching off glycolysis such as the pentose phosphate pathway and serine biosynthesis pathway. The key glycolytic enzymes phosphofructokinase-1 (PFK1), pyruvate kinase (PKM2) and phosphoglycerate mutase 1 (PGAM1) are regulated by upstream and downstream metabolites to balance glycolytic flux with flux through anabolic pathways. Glutamine regulation is tightly controlled by metabolic intermediates that allosterically inhibit and activate glutamate dehydrogenase, which fuels the tricarboxylic acid cycle by converting glutamine derived glutamate to α-ketoglutarate. The elucidation of these key allosteric regulatory hubs in cancer metabolism will be essential for understanding and predicting how cancer cells will respond to drugs that target metabolism. Additionally...

‣ 13C Isotope-Assisted Methods for Quantifying Glutamine Metabolism in Cancer Cells

Zhang, Jie; Ahn, Woo Suk; Gameiro, Paulo A.; Keibler, Mark A.; Zhang, Zhe; Stephanopoulos, Gregory
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em //2014 Português
Relevância na Pesquisa
17.250359%
Glutamine has recently emerged as a key substrate to support cancer cell proliferation, and the quantification of its metabolic flux is essential to understand the mechanisms by which this amino acid participates in the metabolic rewiring that sustains the survival and growth of neoplastic cells. Glutamine metabolism involves two major routes, glutaminolysis and reductive carboxylation, both of which begin with the deamination of glutamine to glutamate and the conversion of glutamate into α-ketoglutarate. In glutaminolysis, α-ketoglutarate is oxidized via the tricarboxylic acid cycle and decarboxylated to pyruvate. In reductive carboxylation, α-ketoglutarate is reductively converted into isocitrate, which is isomerized to citrate to supply acetyl-CoA for de novo lipogenesis. Here, we describe methods to quantify the metabolic flux of glutamine through these two routes, as well as the contribution of glutamine to lipid synthesis. Examples of how these methods can be applied to study metabolic pathways of oncological relevance are provided.

‣ Metabolic Plasticity in Resting and Thrombin Activated Platelets

Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A.; Johnson, Michelle S.; Benavides, Gloria A.; O’Donnell, Valerie; Marques, Marisa B.; Darley-Usmar, Victor M.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 13/04/2015 Português
Relevância na Pesquisa
17.250359%
Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary...

‣ Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer

Yang, Lifeng; Moss, Tyler; Mangala, Lingegowda S.; Marini, Juan; Zhao, Hongyun; Wahlig, Stephen; Armaiz-Pena, Guillermo; Jiang, Dahai; Achreja, Abhinav; Win, Julia; Roopaimoole, Rajesha; Rodriguez-Aguayo, Cristian; Mercado-Uribe, Imelda; Lopez-Berestein,
Fonte: Universidade Rice Publicador: Universidade Rice
Tipo: Journal article; Text; publisher version
Português
Relevância na Pesquisa
27.25036%
Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine‐addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence. Using isotope tracer and bioenergetic analysis, we found that low‐invasive ovarian cancer (OVCA) cells are glutamine independent, whereas high‐invasive OVCA cells are markedly glutamine dependent. Consistent with our findings, OVCA patients’ microarray data suggest that glutaminolysis correlates with poor survival. Notably, the ratio of gene expression associated with glutamine anabolism versus catabolism has emerged as a novel biomarker for patient prognosis. Significantly, we found that glutamine regulates the activation of STAT3, a mediator of signaling pathways which regulates cancer hallmarks in invasive OVCA cells. Our findings suggest that a combined approach of targeting high‐invasive OVCA cells by blocking glutamine's entry into the TCA cycle, along with targeting low‐invasive OVCA cells by inhibiting glutamine synthesis and STAT3 may lead to potential therapeutic approaches for treating OVCAs.

‣ CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4

Wang, L; Zhou, H; Wang, Y; Cui, G; Di, L-j
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
17.769673%
Cancer cells rely on glycolysis to maintain high levels of anabolism. However, the metabolism of glucose via glycolysis in cancer cells is frequently incomplete and results in the accumulation of acidic metabolites such as pyruvate and lactate. Thus, the cells have to develop strategies to alleviate the intracellular acidification and maintain the pH stability. We report here that glutamine consumption by cancer cells has an important role in releasing the acidification pressure associated with cancer cell growth. We found that the ammonia produced during glutaminolysis, a dominant glutamine metabolism pathway, is critical to resist the cytoplasmic acidification brought by the incomplete glycolysis. In addition, C-terminal-binding protein (CtBP) was found to have an essential role in promoting glutaminolysis by directly repressing the expression of SIRT4, a repressor of glutaminolysis by enzymatically modifying glutamate dehydrogenase in mitochondria, in cancer cells. The loss of CtBP in cancer cells resulted in the increased apoptosis due to intracellular acidification and the ablation of cancer cell metabolic homeostasis represented by decreased glutamine consumption, oxidative phosphorylation and ATP synthesis. Importantly, the immunohistochemistry staining showed that there was excessive expression of CtBP in tumor samples from breast cancer patients compared with surrounding non-tumor tissues...

‣ Malate dehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reduces proliferation and apoptosis in activated human T-cells

ELEFTHERIADIS, THEODOROS; PISSAS, GEORGIOS; ANTONIADI, GEORGIA; LIAKOPOULOS, VASSILIOS; STEFANIDIS, IOANNIS
Fonte: D.A. Spandidos Publicador: D.A. Spandidos
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
17.571838%
Activated T cells rely on aerobic glycolysis and glutaminolysis in order to proliferate and differentiate into effector cells. Therefore, intervention in these metabolic pathways inhibits proliferation. The aim of the present study was to evaluate the effects of Krebs' cycle inhibition at the level of malate dehydrogenase-2 (MDH2) in human activated T cells using the MDH2 inhibitor LW6. Activated T cells from healthy volunteers were cultured in the presence or absence of LW6 and cytotoxicity, cell proliferation and the expression levels of hypoxia-inducible factor (HIF)-1α, c-Myc, p53, cleaved caspase-3 and certain enzymes involved in glucose metabolism and glutaminolysis were evaluated. The results revealed that LW6 was not toxic and decreased apoptosis and the levels of the pro-apoptotic tumor suppressor p53. In addition, LW6 inhibited T-cell proliferation and decreased the levels of c-Myc, HIF-1α, glucose transporter-1, hexokinase-II, lactate dehydrogenase-A and phosphorylated pyruvate dehydrogenase. By contrast, LW6 increased the levels of pyruvate dehydrogenase. These alterations may lead to decreased production of pyruvate, which preferentially enters into the Krebs' cycle. Furthermore, LW6 decreased the levels of glutaminase-2...