Página 14 dos resultados de 4394 itens digitais encontrados em 0.015 segundos

‣ Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium.

Phillips, J P; Tainer, J A; Getzoff, E D; Boulianne, G L; Kirby, K; Hilliker, A J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em 12/09/1995 Português
Relevância na Pesquisa
387.53332%
Mutations in Cu/Zn superoxide dismutase (SOD), a hallmark of familial amyotrophic lateral sclerosis (FALS) in humans, are shown here to confer striking neuropathology in Drosophila. Heterozygotes with one wild-type and one deleted SOD allele retain the expected 50% of normal activity for this dimeric enzyme. However, heterozygotes with one wild-type and one missense SOD allele show lesser SOD activities, ranging from 37% for a heterozygote carrying a missense mutation predicted from structural models to destabilize the dimer interface, to an average of 13% for several heterozygotes carrying missense mutations predicted to destabilize the subunit fold. Genetic and biochemical evidence suggests a model of dimer dysequilibrium whereby SOD activity in missense heterozygotes is reduced through entrapment of wild-type subunits into unstable or enzymatically inactive heterodimers. This dramatic impairment of the activity of wild-type subunits in vivo has implications for our understanding of FALS and for possible therapeutic strategies.

‣ Rifampin Resistance in Mycobacterium kansasii Is Associated with rpoB Mutations

Klein, John L.; Brown, Timothy J.; French, Gary L.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /11/2001 Português
Relevância na Pesquisa
387.70277%
Rifampin is the most potent drug used in the treatment of disease due to Mycobacterium kansasii. A 69-bp fragment of rpoB, the gene that encodes the β subunit of the bacterial RNA polymerase, was sequenced and found to be identical in five rifampin-susceptible clinical isolates of M. kansasii. This sequence showed 87% homology with the Mycobacterium tuberculosis gene, with an identical deduced amino acid sequence. In contrast, missense mutations were detected in the same fragment amplified from five rifampin-resistant isolates. A rifampin-resistant strain generated in vitro also harbored an rpoB gene missense mutation that was not present in the parent isolate. All mutations detected (in codons 513, 526, and 531) have previously been described in rifampin-resistant M. tuberculosis isolates. Rifampin MICs determined by E-test were <1 mg/liter for all rifampin-susceptible isolates and >256 mg/liter for all rifampin-resistant ones. In addition, four of the five rifampin-resistant isolates were also resistant to rifabutin. We have thus shown a strong association between rpoB gene missense mutations and rifampin resistance in M. kansasii. Although our results are derived from a small number of isolates and confirmation with larger numbers would be useful...

‣ Control of the Ferric Citrate Transport System of Escherichia coli: Mutations in Region 2.1 of the FecI Extracytoplasmic-Function Sigma Factor Suppress Mutations in the FecR Transmembrane Regulatory Protein

Stiefel, Alfred; Mahren, Susanne; Ochs, Martina; Schindler, Petra T.; Enz, Sabine; Braun, Volkmar
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/2001 Português
Relevância na Pesquisa
387.70277%
Transcription of the ferric citrate transport genes is initiated by binding of ferric citrate to the FecA protein in the outer membrane of Escherichia coli K-12. Bound ferric citrate does not have to be transported but initiates a signal that is transmitted by FecA across the outer membrane and by FecR across the cytoplasmic membrane into the cytoplasm, where the FecI extracytoplasmic-function (ECF) sigma factor becomes active. In this study, we isolated transcription initiation-negative missense mutants in the cytoplasmic region of FecR that were located at four sites, L13Q, W19R, W39R, and W50R, which are highly conserved in FecR-like open reading frames of the Pseudomonas aeruginosa, Pseudomonas putida, Bordetella pertussis, Bordetella bronchiseptica, and Caulobacter crescentus genomes. The cytoplasmic portion of the FecR mutant proteins, FecR1–85, did not interact with wild-type FecI, in contrast to wild-type FecR1–85, which induced FecI-mediated fecB transport gene transcription. Two missense mutations in region 2.1 of FecI, S15A and H20E, partially restored induction of ferric citrate transport gene induction of the fecR mutants by ferric citrate. Region 2.1 of ς70 is thought to bind RNA polymerase core enzyme; the residual activity of mutated FecI in the absence of FecR...

‣ E-Cadherin Gene Mutations Frequently Occur in Synovial Sarcoma as a Determinant of Histological Features

Saito, Tsuyoshi; Oda, Yoshinao; Sugimachi, Keishi; Kawaguchi, Ken-ichi; Tamiya, Sadafumi; Tanaka, Kazuhiro; Matsuda, Shuichi; Sakamoto, Akio; Iwamoto, Yukihide; Tsuneyoshi, Masazumi
Fonte: American Society for Investigative Pathology Publicador: American Society for Investigative Pathology
Tipo: Artigo de Revista Científica
Publicado em /12/2001 Português
Relevância na Pesquisa
387.70277%
Synovial sarcoma is a mesenchymal tumor that has an epithelial character and two major histological subtypes, the biphasic type and the monophasic fibrous type. However, the mechanisms involved in its epithelial differentiation are unknown, and furthermore, the determinants for histological subtype in synovial sarcoma remain unclear. In this study, we immunohistochemically examined E-cadherin expression and screened for genetic alterations in the E-cadherin gene from exon 4 to exon 9 in 49 cases of synovial sarcoma. In addition, we also examined the mRNA expressions of E-cadherin and Snail, a direct repressor of E-cadherin gene expression, by reverse transcriptase-polymerase chain reaction in 20 samples of frozen material. Immunohistochemical E-cadherin membranous expression was observed in 12 cases (24.5%), and was predominant in biphasic tumors. Single-strand conformation polymorphism analysis followed by DNA direct sequencing revealed 15 missense E-cadherin mutations in 12 cases (24.5%: monophasic, 11 of 42; biphasic, 1 of 6; poorly, 0 of 1) and 7 silent mutations (14.3%) in 7 cases. Ten of the 12 cases with E-cadherin missense mutations did not show E-cadherin membranous expression. Reverse transcriptase-polymerase chain reaction demonstrated E-cadherin and Snail mRNA expressions in 14 cases (70%) and in all cases...

‣ Acetylcholine Receptor Pathway Mutations Explain Various Fetal Akinesia Deformation Sequence Disorders

Michalk, Anne; Stricker, Sigmar; Becker, Jutta; Rupps, Rosemarie; Pantzar, Tapio; Miertus, Jan; Botta, Giovanni; Naretto, Valeria G.; Janetzki, Catrin; Yaqoob, Nausheen; Ott, Claus-Eric; Seelow, Dominik; Wieczorek, Dagmar; Fiebig, Britta; Wirth, Brunhilde
Fonte: American Society of Human Genetics Publicador: American Society of Human Genetics
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed γ subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits α1, β1, and δ (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life.

‣ CABC1 Gene Mutations Cause Ubiquinone Deficiency with Cerebellar Ataxia and Seizures

Mollet, Julie; Delahodde, Agnès; Serre, Valérie; Chretien, Dominique; Schlemmer, Dimitri; Lombes, Anne; Boddaert, Nathalie; Desguerre, Isabelle; de Lonlay, Pascale; Ogier de Baulny, Hélène; Munnich, Arnold; Rötig, Agnès
Fonte: American Society of Human Genetics Publicador: American Society of Human Genetics
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Coenzyme Q10 (CoQ10) plays a pivotal role in oxidative phosphorylation (OXPHOS) in that it distributes electrons between the various dehydrogenases and the cytochrome segments of the respiratory chain. Primary coenzyme Q10 deficiency represents a clinically heterogeneous condition suggestive of genetic heterogeneity, and several disease genes have been previously identified. The CABC1 gene, also called COQ8 or ADCK3, is the human homolog of the yeast ABC1/COQ8 gene, one of the numerous genes involved in the ubiquinone biosynthesis pathway. The exact function of the Abc1/Coq8 protein is as yet unknown, but this protein is classified as a putative protein kinase. We report here CABC1 gene mutations in four ubiquinone-deficient patients in three distinct families. These patients presented a similar progressive neurological disorder with cerebellar atrophy and seizures. In all cases, enzymological studies pointed to ubiquinone deficiency. CoQ10 deficiency was confirmed by decreased content of ubiquinone in muscle. Various missense mutations (R213W, G272V, G272D, and E551K) modifying highly conserved amino acids of the protein and a 1 bp frameshift insertion c.[1812_1813insG] were identified. The missense mutations were introduced into the yeast ABC1/COQ8 gene and expressed in a Saccharomyces cerevisiae strain in which the ABC1/COQ8 gene was deleted. All the missense mutations resulted in a respiratory phenotype with no or decreased growth on glycerol medium and a severe reduction in ubiquinone synthesis...

‣ Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps

Chang, Edward; Kim, Sohee; Yin, Haishan; Nagaraja, Haikady N.; Kuret, Jeff
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Mutations in the MAPT gene encoding tau protein lead to neurofibrillary lesion formation, neurodegeneration, and cognitive decline associated with frontotemporal lobar degeneration. While some pathogenic mutations affect MAPT introns, resulting in abnormal splicing patterns, the majority occur in the tau coding sequence leading to single amino acid changes in tau primary structure. Depending on their location within the polypeptide chain, tau missense mutations have been reported to augment aggregation propensity. To determine the mechanisms underlying mutation-associated changes in aggregation behavior, the fibrillization of recombinant pathogenic mutants R5L, G272V, P301L, V337M, and R406W prepared in a full-length four-repeat human tau background was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods. Kinetic constants for nucleation and extension phases of aggregation were then estimated by direct measurement and mathematical simulation. Results indicated that the mutants differ from each other and from wild-type tau in their aggregation propensity. G272V and P301L mutations increased the rates of both filament nucleation and extension reactions, whereas R5L and V337M increased only the nucleation phase. R406W did not differ from wild-type in any kinetic parameter. The results show that missense mutations can directly promote tau filament formation at different stages of the aggregation pathway.

‣ Structural and functional implications of p53 missense cancer mutations

Tan, Yuhong; Luo, Ray
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Publicado em 26/06/2009 Português
Relevância na Pesquisa
388.90844%
Most human cancers contain mutations in the transcription factor p53 and majority of these are missense and located in the DNA binding core domain. In this study, the stabilities of all core domain missense mutations are predicted and are used to infer their likely inactivation mechanisms. Overall, 47.0% non-PRO/GLY mutants are stable (ΔΔG < 1.0 kT) and 36.3% mutants are unstable (ΔΔG > 3.0 kT), 12.2% mutants are with 1.0 kT < ΔΔG < 3.0 kT. Only 4.5% mutants are with no conclusive predictions. Certain types of either stable or unstable mutations are found not to depend on their local structures. Y, I, C, V, F and W (W, R and F) are the most common residues before (after) mutation in unstable mutants. Q, N, K, D, A, S and T (I, T, L and V) are the most common residues before (after) mutation in stable mutants. The stability correlations with sequence, structure, and molecular contacts are also analyzed. No direct correlation between secondary structure and stability is apparent, but a strong correlation between solvent exposure and stability is noticeable. Our correlation analysis shows that loss of protein-protein contacts may be an alternative cause for p53 inactivation. Correlation with clinical data shows that loss of stability and loss of DNA contacts are the two main inactivation mechanisms. Finally...

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, Anna; Tarpey, Patrick S; Licata, Andrea; Cox, James; Whibley, Annabel; Boyle, Jackie; Rogers, Carolyn; Grigg, John; Partington, Michael; Stevenson, Roger E; Tolmie, John; Yates, John RW; Turner, Gillian; Wilson, Meredith; Futreal, Andrew P; Corbe
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...

‣ Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase

Wei, Qiong; Wang, Liqun; Wang, Qiang; Kruger, Warren D.; Dunbrack, Roland L.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /07/2010 Português
Relevância na Pesquisa
387.70277%
Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies, and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen...

‣ Identification and Characterization of 15 Novel GALC Gene Mutations Causing Krabbe Disease

Tappino, Barbara; Biancheri, Roberta; Mort, Matthew; Regis, Stefano; Corsolini, Fabio; Rossi, Andrea; Stroppiano, Marina; Lualdi, Susanna; Fiumara, Agata; Bembi, Bruno; Di Rocco, Maja; Cooper, David N; Filocamo, Mirella
Fonte: Wiley Subscription Services, Inc., A Wiley Company Publicador: Wiley Subscription Services, Inc., A Wiley Company
Tipo: Artigo de Revista Científica
Publicado em /12/2010 Português
Relevância na Pesquisa
387.70277%
The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype-phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region. © 2010 Wiley-Liss...

‣ Mutations in MED12 Cause X-Linked Ohdo Syndrome

Vulto-van Silfhout, Anneke T.; de Vries, Bert B.A.; van Bon, Bregje W.M.; Hoischen, Alexander; Ruiterkamp-Versteeg, Martina; Gilissen, Christian; Gao, Fangjian; van Zwam, Marloes; Harteveld, Cornelis L.; van Essen, Anthonie J.; Hamel, Ben C.J.;
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 07/03/2013 Português
Relevância na Pesquisa
387.70277%
Ohdo syndrome comprises a heterogeneous group of disorders characterized by intellectual disability (ID) and typical facial features, including blepharophimosis. Clinically, these blepharophimosis-ID syndromes have been classified in five distinct subgroups, including the Maat-Kievit-Brunner (MKB) type, which, in contrast to the others, is characterized by X-linked inheritance and facial coarsening at older age. We performed exome sequencing in two families, each with two affected males with Ohdo syndrome MKB type. In the two families, MED12 missense mutations (c.3443G>A [p.Arg1148His] or c.3493T>C [p.Ser1165Pro]) segregating with the phenotype were identified. Upon subsequent analysis of an additional cohort of nine simplex male individuals with Ohdo syndrome, one additional de novo missense change (c.5185C>A [p.His1729Asn]) in MED12 was detected. The occurrence of three different hemizygous missense mutations in three unrelated families affected by Ohdo syndrome MKB type shows that mutations in MED12 are the underlying cause of this X-linked form of Ohdo syndrome. Together with the recently described KAT6B mutations resulting in Ohdo syndrome Say/Barber/Biesecker/Young/Simpson type, our findings point to aberrant chromatin modification as being central to the pathogenesis of Ohdo syndrome.

‣ Molecular modeling indicates distinct classes of missense variants with mild and severe XLRS phenotypes

Sergeev, Yuri V.; Vitale, Susan; Sieving, Paul A.; Vincent, Ajoy; Robson, Anthony G.; Moore, Anthony T.; Webster, Andrew R.; Holder, Graham E.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
387.70277%
X-linked retinoschisis (XLRS) is a vitreo-retinal degeneration caused by mutations in the RS1 gene which encodes the protein retinoschisin (RS1), required for the structural and functional integrity of the retina. Data are presented from a group of 38 XLRS patients from Moorfields Eye Hospital (London, UK) who had one of 18 missense mutations in RS1. Patients were grouped based on mutation severity predicted by molecular modeling: mild (class I), moderate (intermediate) and severe (class II). Most patients had an electronegative scotopic bright flash electroretinogram  (ERG) (reduced b/a-wave ratio) in keeping with predominant inner retinal dysfunction. An association between the type of structural RS1 alterations and the severity of b/a-wave reduction was found in all but the oldest group of patients, significant in patients aged 15–30 years. Severe RS1 missense changes were associated with a lower ERG b/a ratio than were mild changes, suggesting that the extent of inner retinal dysfunction is influenced by the effect of the mutations on protein structure. The majority of class I mutations showed no changes involving cysteine residues. Class II mutations caused severe perturbations due to the removal or insertion of cysteine residues or due to changes in the hydrophobic core. The ERG b/a ratio in intermediate cases was abnormal but showed significant variability...

‣ Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations

Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

‣ Novel Mutations in the Transcriptional Activator Domain of the Human TBX20 in Patients with Atrial Septal Defect

Monroy-Muñoz, Irma Eloisa; Pérez-Hernández, Nonanzit; Rodríguez-Pérez, José Manuel; Muñoz-Medina, José Esteban; Angeles-Martínez, Javier; García-Trejo, José J.; Morales-Ríos, Edgar; Massó, Felipe; Sandoval-Jones, Juan Pablo; Cervantes-Salazar
Fonte: Hindawi Publishing Corporation Publicador: Hindawi Publishing Corporation
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
388.90844%
Background. The relevance of TBX20 gene in heart development has been demonstrated in many animal models, but there are few works that try to elucidate the effect of TBX20 mutations in human congenital heart diseases. In these studies, all missense mutations associated with atrial septal defect (ASD) were found in the DNA-binding T-box domain, none in the transcriptional activator domain. Methods. We search for TBX20 mutations in a group of patients with ASD or ventricular septal defect (VSD) using the High Resolution Melting (HRM) method and DNA sequencing. Results. We report three missense mutations (Y309D, T370O, and M395R) within the transcriptional activator domain of human TBX20 that were associated with ASD. Conclusions. This is the first association of TBX20 transcriptional activator domain missense mutations with ASD. These findings could have implications for diagnosis, genetic screening, and patient follow-up.

‣ Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX

Stromme, P.; Mangelsdorf, M.; Scheffer, I.; Gecz, J.
Fonte: Elsevier Science BV Publicador: Elsevier Science BV
Tipo: Artigo de Revista Científica
Publicado em //2002 Português
Relevância na Pesquisa
387.70277%
Clinical data from 50 mentally retarded (MR) males in nine X-linked MR families, syndromic and non-specific, with mutations (duplication, expansion, missense, and deletion mutations) in the Aristaless related homeobox gene, ARX, were analysed. Seizures were observed with all mutations and occurred in 29 patients, including one family with a novel myoclonic epilepsy syndrome associated with the missense mutation. Seventeen patients had infantile spasms. Other phenotypes included mild to moderate MR alone, or with combinations of dystonia, ataxia or autism. These data suggest that mutations in the ARX gene are important causes of MR, often associated with diverse neurological manifestations.; Strømme, Petter ; Mangelsdorf, Marie E ; Scheffer, Ingrid E ; Gécz, Jozef

‣ CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes

Hackett, A.; Tarpey, P.; Licata, A.; Cox, J.; Whibley, A.; Boyle, J.; Rogers, C.; Grigg, J.; Partington, M.; Stevenson, R.; Tolmie, J.; Yates, J.; Turner, G.; Wilson, M.; Futreal, P.; Corbett, M.; Shaw, M.; Gecz, J.; Raymond, F.; Stratton, M.
Fonte: Nature Publishing Group Publicador: Nature Publishing Group
Tipo: Artigo de Revista Científica
Publicado em //2010 Português
Relevância na Pesquisa
388.90844%
Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR...

‣ Ataxia telangiectasia gene mutations in leukaemia and lymphoma

Boultwood, J
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /07/2001 Português
Relevância na Pesquisa
388.90844%
Ataxia telangiectasia (AT) is a rare multisystem, autosomal, recessive disease characterised by neuronal degeneration, genome instability, and an increased risk of cancer. Approximately 10% of AT homozygotes develop cancer, mostly of the lymphoid system. Lymphoid malignancies in patients with AT are of both B cell and T cell origin, and include Hodgkin's lymphoma, non-Hodgkin's lymphoma, and several forms of leukaemia. The AT locus was mapped to the chromosomal region 11q22–23 using genetic linkage analysis in the late 1980s and the causative gene was identified by positional cloning several years later. The ATM gene encodes a large protein that belongs to a family of kinases possessing a highly conserved C-terminal kinase domain related to the phosphatidylinositol 3-kinase domain. Members of this kinase family have been shown to function in DNA repair and cell cycle checkpoint control following DNA damage. Recent studies indicate that ATM is activated primarily in response to double strand breaks and may be considered a caretaker of the genome. Most mutations in ATM result in truncation and destabilisation of the protein, but certain missense and splicing errors have been shown to produce a less severe phenotype. AT heterozygotes have a slightly increased risk of breast cancer. Atm deficient mice exhibit many of the symptoms found in patients with AT and have a high frequency of thymic lymphoma. The association between mutation of the ATM gene and a high incidence of lymphoid malignancy in patients with AT...

‣ Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

Hamdan, Fadi F.; Gauthier, Julie; Araki, Yoichi; Lin, Da-Ting; Yoshizawa, Yuhki; Higashi, Kyohei; Park, A-Reum; Spiegelman, Dan; Dobrzeniecka, Sylvia; Piton, Amélie; Tomitori, Hideyuki; Daoud, Hussein; Massicotte, Christine; Henrion, Edouard; Diallo, Ou
Fonte: Elsevier Publicador: Elsevier
Tipo: Artigo de Revista Científica
Publicado em 11/03/2011 Português
Relevância na Pesquisa
389.82%
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function...

‣ Identification of 22 novel mutations in patients with Glanzmann's thrombasthenia

Meganathan Kannan; Firdos Ahmad; Birendra Yadav; Abdul Ethayathulla; Rajive Kumar; Ved Choudhry; Renu Saxena
Fonte: Nature Preceedings Publicador: Nature Preceedings
Tipo: Manuscript
Português
Relevância na Pesquisa
387.70277%
Glanzmann's thrombasthenia (GT) is an autosomal recessive inherited platelet function defect that characterized by reduction in, or absence of, platelet aggregation in response to multiple physiologic agonists. GT is characterized by normal platelet count, prolonged bleeding time, and abnormal clot retraction. The defect is caused by mutations in the genes encoding GPIIb or GPIIIa that result in qualitative or quantitative abnormalities of the platelet membrane GPIIb/IIIa. GT occurs in high frequency in certain ethnic populations with an increased incidence of consanguinity, such as Indians, Iranians, Iraqi Jews, Palastinian and Jordanian Arabs and French gypsies. Forty-five unrelated patients of GT were enrolled in the study to identify the causative molecular defects and also to correlate the genotype with the phenotype. Molecular modeling was performed for the novel missense mutations. The current study identifies 22 novel mutations in these patients. Missense mutations were identified as the defects responsible for most of the GT patients (59%). Even though missense was common, the study concludes that the genetic defect is heterogeneous in nature and difficult to design a DNA marker for carrier detection in GT.