Página 3 dos resultados de 4394 itens digitais encontrados em 0.005 segundos

‣ MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability

Clodfelter, Jill E.; Gentry, Michael B.; Drotschmann, Karin
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Defects in the mismatch repair protein MSH2 cause tolerance to DNA damage. We report how cancer-derived and polymorphic MSH2 missense mutations affect cisplatin cytotoxicity. The chemotolerance phenotype was compared with the mutator phenotype in a yeast model system. MSH2 missense mutations display a strikingly different effect on cell death and genome instability. A mutator phenotype does not predict chemotolerance or vice versa. MSH2 mutations that were identified in tumors (Y109C) or as genetic variations (L402F) promote tolerance to cisplatin, but leave the initial mutation rate of cells unaltered. A secondary increase in the mutation rate is observed after cisplatin exposure in these strains. The mutation spectrum of cisplatin-resistant mutators identifies persistent cisplatin adduction as the cause for this acquired genome instability. Our results demonstrate that MSH2 missense mutations that were identified in tumors or as polymorphic variations can cause increased cisplatin tolerance independent of an initial mutator phenotype. Cisplatin exposure promotes drug-induced genome instability. From a mechanistical standpoint, these data demonstrate functional separation between MSH2-dependent cisplatin cytotoxicity and repair. From a clinical standpoint...

‣ Functional Consequences of PRODH Missense Mutations

Bender, Hans-Ulrich ; Almashanu, Shlomo ; Steel, Gary ; Hu, Chien-An ; Lin, Wei-Wen ; Willis, Alecia ; Pulver, Ann ; Valle, David 
Fonte: American Society of Human Genetics Publicador: American Society of Human Genetics
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
491.6669%
PRODH maps to 22q11 in the region deleted in the velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS) and encodes proline oxidase (POX), a mitochondrial inner-membrane enzyme that catalyzes the first step in the proline degradation pathway. At least 16 PRODH missense mutations have been identified in studies of type I hyperprolinemia (HPI) and schizophrenia, 10 of which are present at polymorphic frequencies. The functional consequences of these missense mutations have been inferred by evolutionary conservation, but none have been tested directly. Here, we report the effects of these mutations on POX activity. We find that four alleles (R185Q, L289M, A455S, and A472T) result in mild (<30%), six (Q19P, A167V, R185W, D426N, V427M, and R431H) in moderate (30%–70%), and five (P406L, L441P, R453C, T466M, and Q521E) in severe (>70%) reduction in POX activity, whereas one (Q521R) increases POX activity. The POX encoded by one severe allele (T466M) shows in vitro responsiveness to high cofactor (flavin adenine dinucleotide) concentrations. Although there is limited information on plasma proline levels in individuals of known PRODH genotype, extant data suggest that severe hyperprolinemia (>800 μM) occurs in individuals with large deletions and/or PRODH missense mutations with the most-severe effect on function (L441P and R453C)...

‣ Mutational and Haplotype Analyses of Families with Familial Partial Lipodystrophy (Dunnigan Variety) Reveal Recurrent Missense Mutations in the Globular C-Terminal Domain of Lamin A/C

Speckman, Rebecca A.; Garg, Abhimanyu; Du, Fenghe; Bennett, Lynda; Veile, Rose; Arioglu, Elif; Taylor, Simeon I.; Lovett, Michael; Bowcock, Anne M.
Fonte: The American Society of Human Genetics Publicador: The American Society of Human Genetics
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
490.5334%
Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder characterized by marked loss of subcutaneous adipose tissue from the extremities and trunk but by excess fat deposition in the head and neck. The disease is frequently associated with profound insulin resistance, dyslipidemia, and diabetes. We have localized a gene for FPLD to chromosome 1q21-q23, and it has recently been proposed that nuclear lamin A/C is altered in FPLD, on the basis of a novel missense mutation (R482Q) in five Canadian probands. This gene had previously been shown to be altered in autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD-AD) and in dilated cardiomyopathy and conduction-system disease. We examined 15 families with FPLD for mutations in lamin A/C. Five families harbored the R482Q alteration that segregated with the disease phenotype. Seven families harbored an R482W alteration, and one family harbored a G465D alteration. All these mutations lie within exon 8 of the lamin A/C gene—an exon that has also been shown to harbor different missense mutations that are responsible for EDMD-AD. Mutations could not be detected in lamin A/C in one FPLD family in which there was linkage to chromosome 1q21-q23. One family with atypical FPLD harbored an R582H alteration in exon 11 of lamin A. This exon does not comprise part of the lamin C coding region. All mutations in FPLD affect the globular C-terminal domain of the lamin A/C protein. In contrast...

‣ Mutational analysis of a histone deacetylase in Drosophila melanogaster: missense mutations suppress gene silencing associated with position effect variegation.

Mottus, R; Sobel, R E; Grigliatti, T A
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Publicado em /02/2000 Português
Relevância na Pesquisa
490.5334%
For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that "poison" the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus.

‣ Predicted Effects of Missense Mutations on Native-State Stability Account for Phenotypic Outcome in Phenylketonuria, a Paradigm of Misfolding Diseases

Pey, Angel L. ; Stricher, François ; Serrano, Luis ; Martinez, Aurora 
Fonte: American Society of Human Genetics Publicador: American Society of Human Genetics
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
493.78414%
Phenylketonuria (PKU) is a genetic disease caused by mutations in human phenylalanine hydroxylase (PAH). Most missense mutations result in misfolding of PAH, increased protein turnover, and a loss of enzymatic function. We studied the prediction of the energetic impact on PAH native-state stability of 318 PKU-associated missense mutations, using the protein-design algorithm FoldX. For the 80 mutations for which expression analyses have been performed in eukaryote systems, in most cases we found substantial overall correlations between the mutational energetic impact and both in vitro residual activities and patient metabolic phenotype. This finding confirmed that the decrease in protein stability is the main molecular pathogenic mechanism in PKU and the determinant for phenotypic outcome. Metabolic phenotypes have been shown to be better predicted than in vitro residual activities, probably because of greater stringency in the phenotyping process. Finally, all the remaining 238 PKU missense mutations compiled at the PAH locus knowledgebase (PAHdb) were analyzed, and their phenotypic outcomes were predicted on the basis of the energetic impact provided by FoldX. Residues in exons 7–9 and in interdomain regions within the subunit appear to play an important structural role and constitute hotspots for destabilization. FoldX analysis will be useful for predicting the phenotype associated with rare or new mutations detected in patients with PKU. However...

‣ Structural Impact of Three Parkinsonism-Associated Missense Mutations on Human DJ-1

Lakshminarasimhan, Mahadevan; Maldonado, Marien T.; Zhou, Wenbo; Fink, Anthony L.; Wilson, Mark A.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
491.6669%
A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows that the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity...

‣ Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients

Ali, Bassam R.; Xu, Huifang; Akawi, Nadia A.; John, Anne; Karuvantevida, Noushad S.; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.68297%
Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K)...

‣ The effect of BRCA1 missense mutations on homology directed recombination

Ransburgh, Derek J.R.; Chiba, Natsuko; Ishioka, Chikashi; Toland, Amanda Ewart; Parvin, Jeffrey D.
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.68297%
There have been few published analyses of the effects of missense mutations of the BRCA1 gene on BRCA1 protein function. In this study, we adapted a previously described homology directed recombination (HDR) assay to the analysis of the effects of BRCA1 point substitutions on its function in recombination. We established a HeLa-derived cell line, which has integrated in its genome a recombination substrate. Following transfection of a plasmid that expresses the endonuclease that creates a double-stranded break in the recombination substrate, HDR is readily scored by the percentage of GFP-positive cells. By combining RNAi specific for the cellular BRCA1 mRNA with expression of BRCA1 mutants resistant to the RNAi, we could effectively replace the endogenous BRCA1 protein with selected point mutants of BRCA1 and test these in the recombination assay. We found that both, the amino- and carboxy-terminal ~300 residues of BRCA1 were essential for directing HDR. Sixteen missense mutants from the amino terminus of BRCA1 were analyzed for function in HDR, and we found that several point mutants fully replaced the wild-type BRCA1 and are neutral in this process. Mutation of any single zinc-coordinating residue was fully defective in this assay. Several protein variants due to missense mutations...

‣ E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary Diffuse Gastric Cancer

Simões-Correia, Joana; Figueiredo, Joana; Lopes, Rui; Stricher, François; Oliveira, Carla; Serrano, Luis; Seruca, Raquel
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 21/03/2012 Português
Relevância na Pesquisa
493.78414%
E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro...

‣ Analyzing Effects of Naturally Occurring Missense Mutations

Zhang, Zhe; Miteva, Maria A.; Wang, Lin; Alexov, Emil
Fonte: Hindawi Publishing Corporation Publicador: Hindawi Publishing Corporation
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Single-point mutation in genome, for example, single-nucleotide polymorphism (SNP) or rare genetic mutation, is the change of a single nucleotide for another in the genome sequence. Some of them will produce an amino acid substitution in the corresponding protein sequence (missense mutations); others will not. This paper focuses on genetic mutations resulting in a change in the amino acid sequence of the corresponding protein and how to assess their effects on protein wild-type characteristics. The existing methods and approaches for predicting the effects of mutation on protein stability, structure, and dynamics are outlined and discussed with respect to their underlying principles. Available resources, either as stand-alone applications or webservers, are pointed out as well. It is emphasized that understanding the molecular mechanisms behind these effects due to these missense mutations is of critical importance for detecting disease-causing mutations. The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.

‣ Missense mutations in the human SDHB gene increase protein degradation without altering intrinsic enzymatic function

Yang, Chunzhang; Matro, Joey C.; Huntoon, Kristin M.; Ye, Donald Y.; Huynh, Thanh T.; Fliedner, Stephanie M. J.; Breza, Jan; Zhuang, Zhengping; Pacak, Karel
Fonte: Federation of American Societies for Experimental Biology Publicador: Federation of American Societies for Experimental Biology
Tipo: Artigo de Revista Científica
Publicado em /11/2012 Português
Relevância na Pesquisa
493.78414%
Mutations of succinate dehydrogenase subunit B (SDHB) play a crucial role in the pathogenesis of the most aggressive and metastatic pheochromocytomas (PHEOs) and paragangliomas (PGLs). Although a variety of missense mutations in the coding sequence of the SDHB gene have been found in PHEOs and PGLs, it has been unclear whether these mutations impair mRNA expression, protein stability, subcellular localization, or intrinsic protein function. RT-PCR and Western blot analysis of SDHB mRNA and protein expression from SDHB-related PHEOs and PGLs demonstrated intact mRNA expression but significantly reduced protein expression compared to non-SDHB PHEOs and PGLs. A pulse-chase assay of common SDHB missense mutations in transfected HeLa cell lines demonstrated that the loss of SDHB function was due to a reduction in mutant protein half-life, whereas colocalization of SDHB with mitochondria and immunoprecipitation with SDHA demonstrated intact subcellular localization and complex formation. The half-life of the SDHB protein increased after treatment with histone deacetylase inhibitors (HDACis), implicating the protein quality control machinery in the degradation of mutant SDHB protein. These findings provide the first direct mechanism of functional loss resulting from SDHB mutations and suggest that reducing protein degradation with HDACis may serve as a novel therapeutic paradigm for preventing the development of SDHB-related tumors.—Yang...

‣ Only Missense Mutations Affecting the DNA Binding Domain of P53 Influence Outcomes in Patients with Breast Carcinoma

Végran, Frédérique; Rebucci, Magali; Chevrier, Sandy; Cadouot, Muriel; Boidot, Romain; Lizard-Nacol, Sarab
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Publicado em 24/01/2013 Português
Relevância na Pesquisa
493.78414%
The presence of a TP53 gene mutation can influence tumour response to some treatments, especially in breast cancer. In this study, we analysed p53 mRNA expression, LOH at 17p13 and TP53 mutations from exons 2 to 11 in 206 patients with breast carcinoma and correlated the results with disease-free and overall survival. The observed mutations were classified according to their type and location in the three protein domains (transactivation domain, DNA binding domain, oligomerization domain) and correlated with disease-free and overall survival. In our population, neither p53 mRNA expression nor LOH correlated with outcome. Concerning TP53 mutations, 27% of tumours were mutated (53/197) and the presence of a mutation in the TP53 gene was associated with worse overall survival (p = 0.0026) but not with disease-free survival (p = 0.0697), with median survival of 80 months and 78 months, respectively. When alterations were segregated into mutation categories and locations, and related to survival, tumours harbouring mutations other than missense mutations in the DNA binding domain of P53 had the same survival profiles as wild-type tumours. Concerning missense mutations in the DNA binding domain, median disease-free and overall survival was 23 months and 35 months...

‣ Molecular mechanisms of disease-causing missense mutations

Stefl, Shannon; Nishi, Hafumi; Petukh, Marharyta; Panchenko, Anna R.; Alexov, Emil
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions, and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies which illustrate the association between missense mutations and diseases. In addition we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally we report the current state-of-the-art methodologies which predict the effects of mutations on protein stability, the hydrogen bond network, pH-dependence, conformational dynamics and protein function.

‣ Functional differences among BRCA1 missense mutations in the control of centrosome duplication

Kais, Z; Chiba, N; Ishioka, C; Parvin, JD
Fonte: PubMed Publicador: PubMed
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
491.6669%
We analyzed the effects of 14 different missense mutations in the RING domain of BRCA1 on the function of the protein in the control of centrosome number in tissue culture cells. Whereas 2 of the 14 BRCA1 variant proteins were neutral in the centrosome duplication assay, missense mutations of zinc-coordinating residues (C24R, C27A, C39Y, H41F, C44F and C47G) and mutations encoding BRCA1 variants M18T and I42V resulted in BRCA1 proteins that caused centrosome amplification. BRCA1 variant proteins I21V, I31M, L52F and D67Y had an intermediate effect on centrosome duplication. In addition, one of the variants, L52F, caused a peculiar phenotype with amplified centrosomes but the centrioles remained paired. By comparison, other BRCA1 variants that caused centrosome amplification had clustering of supernumerary centrosomes with unpaired centrioles. This surprising phenotype suggests that the BRCA1 protein regulates two functions in the control of centrosome duplication: regulation of centrosome number and regulation of centriole pairing. The L52F is unusual as it is defective in only one of these processes. This study analyzes the function of BRCA1 missense mutations in the control of centrosome duplication, a critical step in the maintenance of genetic stability of mammary epithelial cells...

‣ Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM

Friend, K.; Crimmins, D.; Phan, T.; Sue, C.; Colley, A.; Fung, V.; Morris, J.; Sutherland, G.; Richards, R.
Fonte: SPRINGER VERLAG Publicador: SPRINGER VERLAG
Tipo: Artigo de Revista Científica
Publicado em //1999 Português
Relevância na Pesquisa
492.87254%
Mutations in the brain specific P/Q type Ca2+ channel alpha1 subunit gene, CACNA1A, have been identified in three clinically distinct disorders, viz. episodic ataxia type 2 (EA-2), familial hemiplegic migraine (FHM) and spinocerebellar ataxia 6 (SCA6). For individuals with EA-2, the mutations described thus far are presumed to result in a truncated protein product. Several different missense mutations have been identified in patients with FHM. At least two of these mutations have been identified on two different chromosome 19p13 haplotypes and thus represent recurrent mutations. In the present study, we have screened several individuals for mutations in all 47 exons in the CACNA1A gene by single-strand conformation analysis. We have characterised a novel missense mutation, G5260A, in exon 32 in a family segregating for EA-2. The consequence of this mutation is an amino acid substitution at a highly conserved position within the CACNA1A gene. This represents the first point mutation not resulting in a proposed truncated protein. Furthermore, this mutation has been detected in a family member with mild clinical signs including only migraine. Additionally, a second previously identified recurrent muta tion, C2272T, in exon 16 has been discovered in a patient with FHM.; Friend...

‣ Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

Vivanco, Igor; Feng, Whei L; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Thomas, Roman K; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawa
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Background: Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings: Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/ 8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions: Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

‣ Fabry disease: Identification of 50 novel α-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations

Shabbeer, Junaid; Yasuda, Makiko; Benson, Stacy D; Desnick, Robert J
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artigo de Revista Científica
Publicado em 01/03/2006 Português
Relevância na Pesquisa
492.3061%
Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase, α-galactosidase A (EC 3.2.1.22; α-Gal A). The molecular lesions in the α-Gal A gene causing the classic phenotype of Fabry disease in 66 unrelated families were determined. In 49 families, 50 new mutations were identified, including: 29 missense mutations (N34K, T41I, D93V, R112S, L166G, G171D, M187T, S201Y, S201F, D234E, W236R, D264Y, M267R, V269M, G271S, G271V, S276G, Q283P, A285P, A285D, M290I, P293T, Q312H, Q321R, G328V, E338K, A348P, E358A, Q386P); nine nonsense mutations (C56X, E79X, K127X, Y151X, Y173X, L177X, W262X, Q306X, E338X); five splicing defects (IVS4-1G > A, IVS5-2A > G, IVS5 + 3A > G, IVS5 + 4A > G, IVS6-1G > C); four small deletions (18delA, 457delGAC, 567delG, 1096delACCAT); one small insertion (996insC); one 3.1 kilobase Alu-Alu deletion (which included exon 2); and one complex mutation (K374R, 1124delGAG). In 18 families, 17 previously reported mutations were identified, with R112C occurring in two families. In two classically affected families, affected males were identified with two mutations: one with two novel mutations, D264Y and V269M and the other with one novel (Q312H) and one previously reported (A143T) mutation. Transient expression of the individual mutations revealed that D264Y and Q312H were localised in the endoplasmic reticulum and had no detectable or markedly reduced activity...

‣ A Structural Systems Biology Approach for Quantifying the Systemic Consequences of Missense Mutations in Proteins

Cheng, Tammy M. K.; Goehring, Lucas; Jeffery, Linda; Lu, Yu-En; Hayles, Jacqueline; Novák, Béla; Bates, Paul A.
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
492.87254%
Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1) interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition) for yeast; (2) phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK) pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.

‣ Genética molecular de hemofilia: caracterización de mutaciones en hemofilia B, expresión de hemofilia en mujeres y desarrollo de nuevos métodos de análisis de inversiones; Molecular genetics of hemophilia: characterization of hemophilia B mutations, expression of hemophilia in women and development of new methods for inversion analysis

Radic, Claudia Pamela
Fonte: Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires Publicador: Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires
Tipo: info:eu-repo/semantics/doctoralThesis; tesis doctoral; info:eu-repo/semantics/publishedVersion Formato: application/pdf
Publicado em //2010 Português
Relevância na Pesquisa
492.87254%
Las hemofilias A (HA) y B (HB) son coagulopatías hereditarias, ligadas al cromosoma X (X), sufridas por varones (1:5000) y raramente por mujeres, causada por defectos génicos del factor VIII (F8) y IX (F9), respectivamente. Para caracterizar el espectro de mutaciones causales de HB en Argentina se aplicó un esquema original de 12 amplímeros para el F9, incluyendo un screening por CSGE (conformation sensitive gel electrophoresis), en 49 familias, y se identificaron 29 cambios missense (60%), 7 nonsense (14%), 4 defectos de splicing (8%), 2 pequeñas inserciones‐deleciones (4%), 6 grandes deleciones (12%) y un cambio en región promotora del F9. Dos cambios missense no reportados mostraron, uno la disrupción de un puente disulfuro y otro la destrucción de un sitio de γ‐carboxilación condicionando el fenotipo de HB severa. Para mejorar la estrategia de detección de grandes rearreglos que involucran int22h e int1h en el F8, causales del 50% de las HA severas, se desarrolló un abordaje nuevo, inverse‐shifting‐PCR (IS‐PCR). Mediante el uso de un test diagnóstico para la inversión del intron 22 (Inv22), los resultados de IS‐PCR fueron validados por perfecta concordancia en 32 y 43 casos previamente estudiados por Southern blot y PCR inversa...

‣ RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database

Valverde, José R.; Alonso García de la Rosa, Francisco Javier; Palacios, Itziar; Pestaña, Ángel
Fonte: BioMed Central Publicador: BioMed Central
Tipo: Artículo Formato: 406983 bytes; application/pdf
Português
Relevância na Pesquisa
493.71902%
[Background] Retinoblastoma, a prototype of hereditary cancer, is the most common intraocular tumour in children and potential cause of blindness from therapeutic eye ablation, second tumours in germ line carrier's survivors, and even death when left untreated. The molecular scanning of RB1 in search of germ line mutations lead to the publication of more than 900 mutations whose knowledge is important for genetic counselling and the characterization of phenotypic-genotypic relationships.; [Results] A searchable database (RBGMdb) has been constructed with 932 published RB1 mutations. The spectrum of these mutations has been analyzed with the following results: 1) the retinoblastoma protein is frequently inactivated by deletions and nonsense mutations while missense mutations are the main inactivating event in most genetic diseases. 2) Near 40% of RB1 gene mutations are recurrent and gather in sixteen hot points, including twelve nonsense, two missense and three splicing mutations. The remainder mutations are scattered along RB1, being most frequent in exons 9, 10, 14, 17, 18, 20, and 23. 3) The analysis of RB1 mutations by country of origin of the patients identifies two groups in which the incidence of nonsense and splicing mutations show differences extremely significant...